1 Abstract

A General equilibrium model with the firm formation and the determination of share holdings rates is provided through a generalization of the coalition production equilibrium (CPE) framework in Böhm (1973) and the social coalitional equilibrium (SCE) concept in Ichishi (1981).

2 Specific Features

1. The share holdings rates are treated as given (like prices) for all economic members although each coalition is allowed to change the rates as SCE deviation strategy so that the formation of firms and their share holdings rates are determined as a generalized sense of the social coalitional equilibrium.

2. Our equilibrium concept generalizes the notions of Böhm’s CPE and Ichishi’s SCE in that (i) technologies of coalitions are assumed to depend on their investment levels, and (ii) multiple coalition structures having different investment purposes (such as different industries having independent coalition-deviation opportunities) are simultaneously determined.

3. Our model also gives an extension of the standard Arrow-Debreu private ownership economy (Debreu, 1959) and an answer to the firm formation problem including the determination of share holdings rates.

3. Agents, Coalitions and Technologies

There are n agents, t types of commodities, and λ types of investment purposes. Let N = \{1, . . . , n\} be the set of agents. For each investment purpose \(t = 1, . . . , \lambda \), a coalition structure \(\mathfrak{S} \) (a partition of \(N \)) is determined as a generalized sense of the SCE equilibrium.

\[\text{Profit function for } S \subseteq N \text{ under investment } (z_i^t)_{i \in S}: \pi_{t,S}(p,(z_i^t)_{i \in S}) \equiv \max_{y \in Y^t,S} \{p \cdot y \} \text{ s.t. } y \in Y^t,S(\sum_{i \in S} z_i^t) \}. \]

\[\text{Income for } i \text{ of } S \text{ under share-holdings rate } \theta^{t,S}(p, (z_i^t)_{i \in S}): I_{t,S}(p,(z_i^t)_{i \in S};\theta^{t,S}) \equiv \theta^{t,S} \pi_{t,S}(p,(z_i^t)_{i \in S}). \]

A list \((x_i,(z_i^t)_{i \in S})\) is defined as \(z_i^t \in X_t \) for all \(t = 1, \ldots, \lambda \).

(Investment Feasibility): for each \(i \in S, S \in \mathfrak{S} \) and \(t = 1, \ldots, \lambda \), \(\omega_i - \sum_{t=1}^{\lambda} z_i^t \in X_t \).

(Budget Feasibility): for each \(i \in N, p \cdot x_i \leq p \cdot (\omega_i - \sum_{t=1}^{\lambda} z_i^t) + \sum_{t=1}^{\lambda} \sum_{S \in \mathfrak{S}, S \subseteq T} I_{t,S}(p, (z_i^t)_{i \in S}; \theta^{t,S}). \)

4 Equilibrium with Firm Formation

A list \((x_i, (z_i^t)_{i \in S})_{i=1}^{n} , \theta, p, \mathfrak{S}) \) is an equilibrium state if the following three conditions are satisfied.

(Feasibility Condition) \((x_i, (z_i^t)_{i \in S})_{i=1}^{n} \) is feasible under \(\mathfrak{S}, p \) and \(\theta \).

(Market-Clearing Condition) \(\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} \omega_i + \sum_{i=1}^{\lambda} \sum_{S \in \mathfrak{S}, T \subseteq S} \psi_{t,S}^S(p, (z_i^t)_{i \in S}). \)

(Market-Stability Condition) There are no investment type \(k \in \{1, \ldots, \lambda\} \), coalition \(D \subseteq N \), list of consumptions \((\bar{x}_i)_{i \in D}\), list of investments \((\bar{z}_i^t)_{i \in D}\), and share-holdings rate \(\bar{\theta}_{k,D} \) satisfying the following three conditions:

(i) \(u_i(\bar{x}_i) > u_i(x_i) \) for all \(i \in D \),

(ii) \(\omega_i - \sum_{i \neq k} z_i^t - z_i^t \in X_i \) for all \(i \in D \),

(iii) \(p \cdot \bar{x}_i \leq p \cdot \omega_i + \sum_{i \neq k} \sum_{S \in \mathfrak{S}, S \subseteq T} I_{t,S}(p, (z_i^t)_{i \in S}; \theta^{t,S}) + I_{k,D}^S(p, (z_i^t)_{i \in D}; \bar{\theta}_{k,D}) \) for all \(i \in D \).

5 Theorems

Lemma 1: Let \((x_i, (z_i^t)_{i \in S})_{i=1}^{n} , \theta, p, \mathfrak{S}\) be an equilibrium state. Then, for any \(i \in N, x_i \) maximizes \(u_i \) subject to the constraint \((x' \in X_i, p \cdot x' \leq p \cdot (\omega_i - \sum_{t=1}^{\lambda} z_i^t)) \) and \(\sum_{t=1}^{\lambda} \sum_{S \in \mathfrak{S}, S \subseteq T} I_{t,S}(p, (z_i^t)_{i \in S}; \theta^{t,S}) \).

The lemma says that if we redefine each agent’s initial endowments as \(\omega_i - \sum_{t=1}^{\lambda} z_i^t \) and recognize \(Y^t,S(\sum_{i \in S} z_i^t) \) as the technology of each firm \(S \), our equilibrium state is an equilibrium of the standard Arrow-Debreu Private Ownership Economy.

Lemma 2: Our equilibrium state can be identified with a generalized Social Coalitional Equilibrium.

For such an identification, we consider an additional agent, a price and shareholdings rate manipulator.

Theorem: A Generalized social coalitional equilibrium exists under a certain balancedness condition.

We investigate how the balancedness condition is satisfied or violated in our natural economic settings and assumptions.

References

(JSME Methodology Subcommittee - Spring 2017 Meeting)