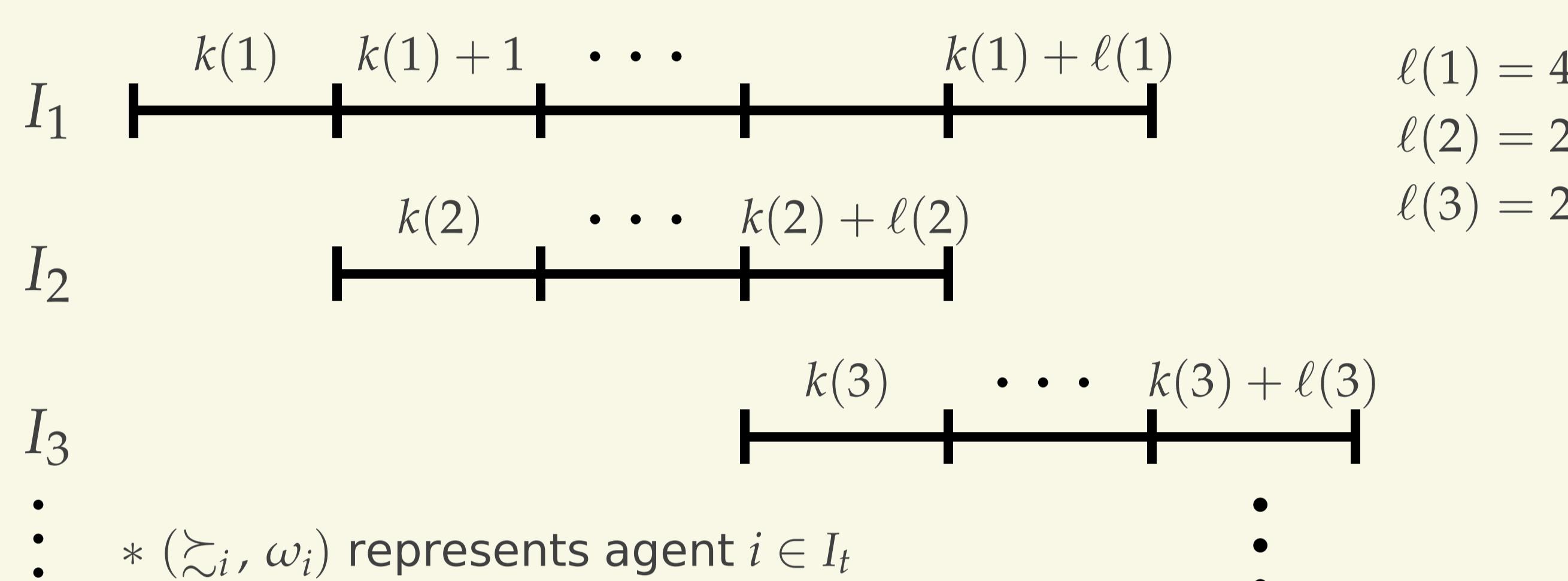


A Universal Implementability of Price-Money Mechanism for Overlapping-Generations Economies

Abstract

We axiomatically characterize **price-money mechanism** for overlapping-generations economies, using the core limit theorem of Urai and Murakami (2016). The category theoretic argument in Sonnenschein (1974) is generalized and reinterpreted as a **universal implementability** of price-money mechanism. Price-money mechanism is shown to be uniquely and efficiently implement all of other allocation mechanisms satisfying several basic axioms. We also show an isomorphism theorem, which says that we obtain a **minimum information space** having the universal implementability property.

Model



- An economy \mathcal{E} is identified with the list, $(\{I_t\}, \{K_t\}, \{(\sim_i, \omega^i)\})$, and \mathcal{Econ} denotes the set of all economies.
- $\mathcal{M}\mathcal{W}\mathcal{a}\mathcal{r}\mathcal{a}s(\mathcal{E})$ is the set of all **monetary equilibrium** allocations: the list of $p^* \in \mathcal{P}(\mathcal{E})$, feasible allocation $x^* = (x_i^* \in \mathbf{R}^{K_t})_{i \in \bigcup_{t \in N} I_t}$ and money supply function $M_{\mathcal{E}}^* : N = \bigcup_{t=1}^{\infty} I_t \rightarrow \mathbf{R}_+$, where x_i^* is \sim_i -greatest element in $\{x_i \in \mathbf{R}^{K_t} \mid p^* \cdot x_i \leq p^* \cdot \omega_i + M_{\mathcal{E}}^*(i)\}$.
- Allocation x is **weakly Pareto-optimal (WPO)** if there is no y with $\sum_{t \in N} \sum_{i \in I_t} y_i = \sum_{t \in N} \sum_{i \in I_t} x_i$, such that $y_i = x_i$ except for finite agents, $y_i \sim_i x_i$ for all i and $y_i \succ_i x_i$ for at least one i .
- Finite core** of an economy \mathcal{E} , $\mathcal{F}\mathcal{c}\mathcal{o}\mathcal{r}\mathcal{e}(\mathcal{E})$, is the set of feasible allocation that cannot be blocked by any finite coalition.

Message Mechanism

- A social choice correspondence is $g : \mathcal{Econ} \ni \mathcal{E} \mapsto g(\mathcal{E}) \subset (\mathbf{R}_{\infty})^N$.
- A **message mechanism** based on g is a triple (A, μ, f) , where A is **message space**, $\mu : \mathcal{E} \mapsto \mu(\mathcal{E}) \subset A$ assigns **equilibrium messages**, $f : \mathcal{Econ} \times A \rightarrow (\mathbf{R}_{\infty})^N$ defines **responses** to message $a \in A$ for each agent in \mathcal{E} , satisfying $g(\mathcal{E}) = \{(f_i(\mathcal{E}, a))_{i=1}^{\infty} \mid a \in \mu(\mathcal{E})\}$.
- Price-money mechanism** is defined by $(\mathcal{P} \times \mathcal{M}, \pi, e)$, where $\mathcal{P} \times \mathcal{M} = \{p \in \mathbf{R}^{\infty} \mid \exists [(x^t)_{t=1}^{\infty}] \in \Delta_{++}, \Pr_{K(1)} p = x^1, \frac{\Pr_{K(t)} p}{\|\Pr_{K(t)} p\|} = x^t\} \times \{M \mid M : \mathcal{Econ} \ni \mathcal{E} \mapsto M_{\mathcal{E}} \in \mathbf{R}_+^N\}$, $\pi(\mathcal{E})$ is the set of all price-money equilibrium messages, e is the excess demand function such that $e_i(p, M_{\mathcal{E}})$ is the \sim_i -greatest point in $\{x_i \in \mathbf{R}^{K_t} \mid p \cdot x_i \leq p \cdot \omega_i + M_{\mathcal{E}}(i)\}$.

Replica Core Equivalence Theorem

A feasible allocation x for \mathcal{E} is a monetary competitive equilibrium allocation if and only if its $(m+n)$ -fold replica allocation belongs to $\mathcal{F}\mathcal{c}\mathcal{o}\mathcal{r}\mathcal{e}(\mathcal{E}^m(x) \oplus \mathcal{E}^n(\omega))$ for every $m \in N$ and $n \in N$. [Urai & Murakami 2016]

Axioms

Axiom I (Idempotency)

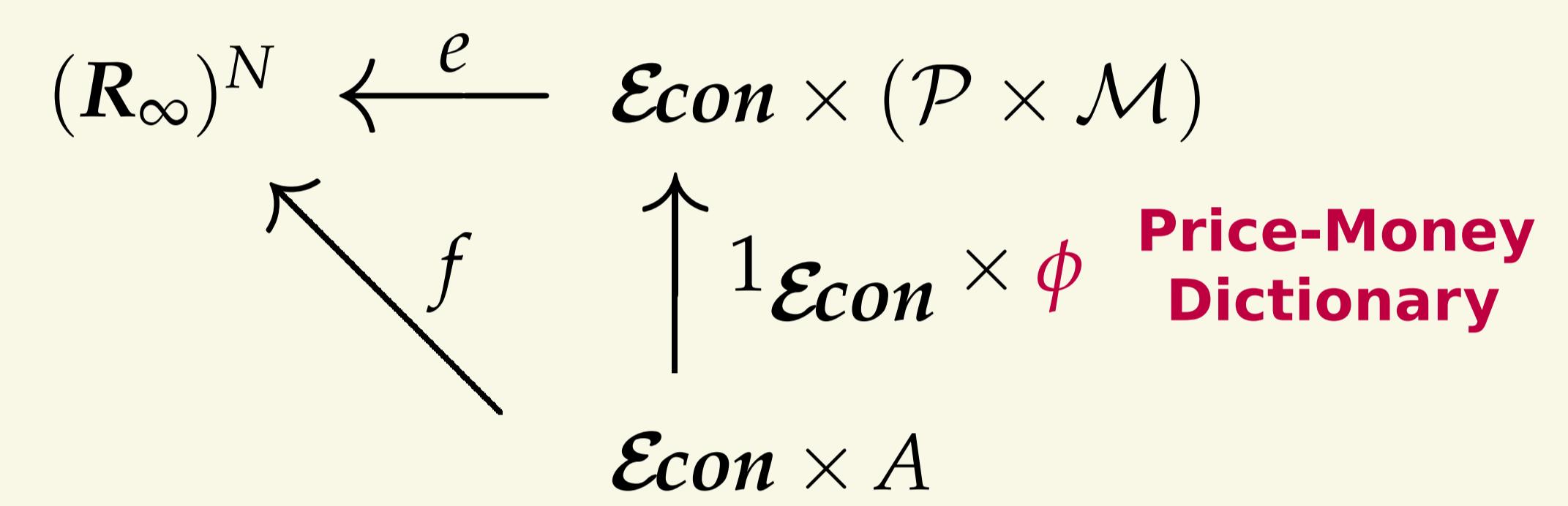
For each $\mathcal{E} \in \mathcal{Econ}$ and $a \in A$, $f(\mathcal{E}(f(\mathcal{E}, a)), a) = f(\mathcal{E}, a)$.

Axiom S (Sonnenschein)

For each $(i_1, \mathcal{E}^1), \dots, (i_m, \mathcal{E}^m)$, there exists an economy \mathcal{E}_* including $\{i_1, \dots, i_m\}$ such that a is a solution message for \mathcal{E}_* for which the equilibrium list $(f^i(\mathcal{E}_*, a))_{i=1}^{\infty}$ is an extension of $(f^{i_s}(\mathcal{E}^s, a))_{s=1}^m$.

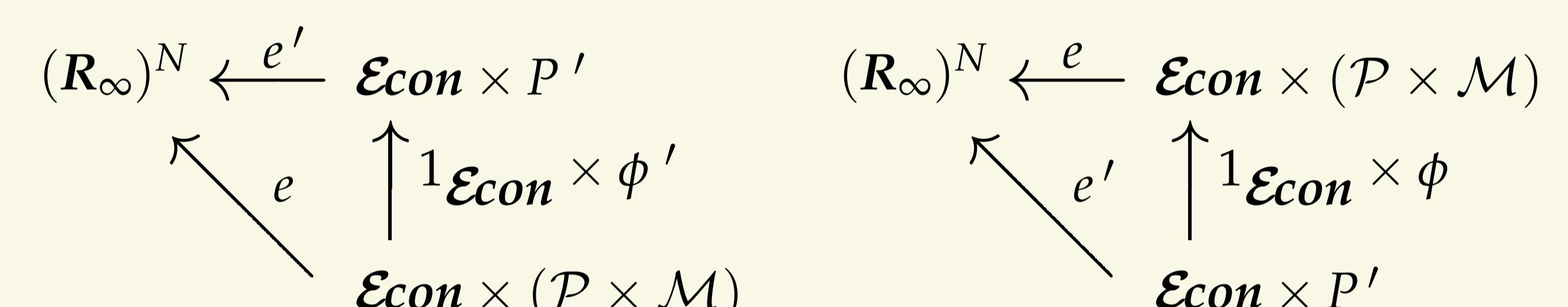
Universal Implementability Theorem

If (A, μ, f) is a message mechanism based on a social choice correspondence that is compatible with Fcore and WPO allocations, and if (A, μ, f) satisfies Axioms I and S, then there exists a unique function $\phi : A \rightarrow \mathcal{P} \times \mathcal{M}$ such that the next triangle commutes.



Isomorphism Theorem

Let $(\mathcal{P} \times \mathcal{M}, \pi, e)$ satisfy Axioms I and S. Then there exists isomorphism $h' : \mathcal{P} \times \mathcal{M} \rightarrow P'$ and $e = e' \circ [1_{\mathcal{Econ}} \times h']$ for any Fcore-WPO compatible (P', π', e') satisfying Axioms I and S.

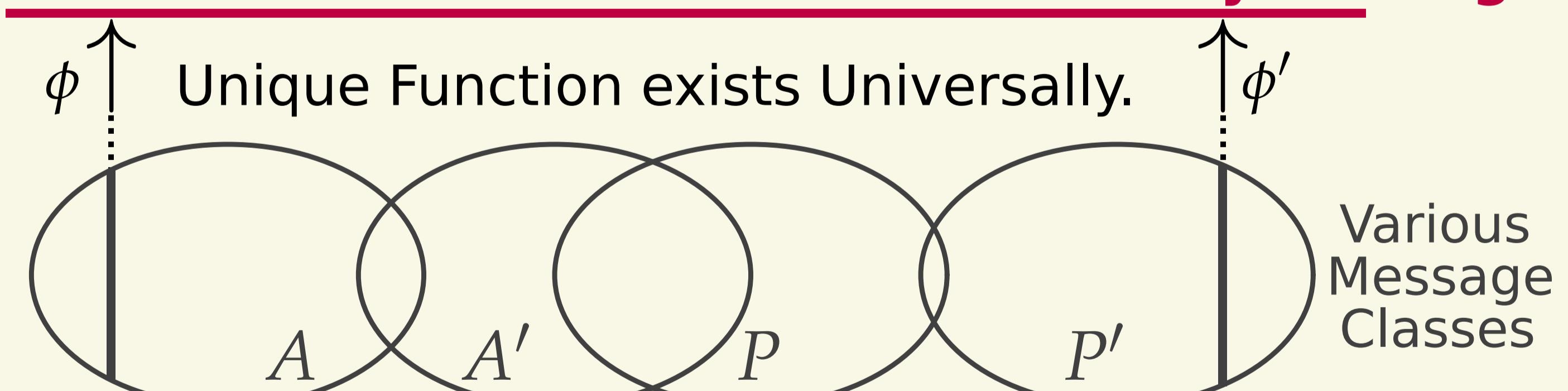


If the problem is restricted on spaces with topological (differentiable) structures and continuous (differentiable) mappings, then h' can be taken as a homeomorphism (diffeomorphism).

Conclusion

Unique up to Isomorphism

Price-Money Message



- The universality and the efficiency property of price-money message mechanism is proved.**

References

- [1] Sonnenschein (1974) "An axiomatic characterization of the price mechanism," *Econometrica*.
- [2] Urai and Murakami (2016) "Replica core equivalence theorem: An extension of the Debreu-Scarf limit theorem to double infinity monetary economies," *JMathE*.
- [3] Bourbaki (1939) "Theory of Sets," Springer.
- [4] Hurwicz (1960) "Optimality and Informational Efficiency in Resource Allocation Processes," *Mathematical Methods in the Social Sciences*, Stanford University Press.