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Abstract

For a moral code of conduct to gain universal acceptance in soci-

ety, it would have to satisfy minimum requirements of consistency and

procedural justice. The so-called prescriptivity and universalizability

principles in ethics together say that any moral judgement prescribes
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a person what to do in a situation and that the prescription should be

universalizable to apply to other persons�actions in situations that are

identical in relevant respects. By adapting standard axioms in social

choice theory, we formalize these principles in the framework of nor-

mal form games and study the implications on equilibrium outcomes.

A moral code speci�es socially acceptable responses against other in-

dividuals�behavior. A fair play equilibrium is a strategy pro�le where

everyone behaves optimally subject to the moral code. We show that

for any admissible moral code, the set of fair play equilibria coincides

with that of Nash equilibria in all games. The result identi�es a con-

�ict between the two principles of moral judgements and what a moral

code can achieve as equilibrium outcomes.

JEL Classi�cation: D63, D71

Keywords: moral code, prescriptivity, universalizability, Hare, fair

play equilibrium, Nash equilibrium, Arrow�s impossibility theorem

1 Introduction

This paper develops a new axiomatic approach to the design of moral codes,

motivated by the moral philosophy of Hare (1952, 1963, 1981). Richard

Mervyn Hare (1919 � 2002), a leading English moral philosopher in the

twentieth century, appeals to two logical properties of moral judgements: pre-

scriptivity and universalizability. Prescriptivity states that moral judgements

entail imperatives and normally lead to action. It does not just describe or

evaluate decisions; "You ought to do this" (used evaluatively) logically entails

the imperative "Do this."

Those imperatives must be universalizable in the sense that if it is right for

a particular person P to do an action A, then the same action must likewise

be right for any person exactly like P, or like P in the relevant respects.

Furthermore, if P is right in doing A in a situation, then it must be right for
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the person to do the same in other relevantly similar situations. This is the

essence of universalizability1.

Universalizability has its roots in a wide range of world cultures. For ex-

ample, the so called Golden Rule of the gospel is one of them: �Do to others

as you would have them do to you.�Kant is the �rst moral philosopher to

appreciate the concept of universalizability, and formulates it as his categor-

ical imperative, which states that the only morally acceptable maxims of our

actions are those that could rationally be willed to be universal law (Kant,

1785). Sidgwick (1907) is also a stout defender of universalizability, which

underlies his principle of "equity" or "fairness."

...whatever action any of us judges to be right for himself, he implicitly

judges to be right for all similar persons in similar circumstances. Or, as

we may otherwise put it, �if a kind of conduct that is right (or wrong) for

me is not right (or wrong) for some one else, it must be on the ground of

some di¤erence between the two cases, other than the fact that I and he are

di¤erent persons.� (Sidgwick (1907), Book III, Chap. XIII, p.379.)

Although prescriptivity and universalizability are certainly fundamental

and not without practical importance, a question still remains in our mind:

What is the outcome if all the members in a society make moral judgments ac-

cording to prescriptivity and universalizability and they choose their courses

of action independently ? For example, if it is right for a person P to do

an action A, then prescriptivity makes this moral judgement an imperative

that orders P to do A. Universalizability applies this imperative to any other

person who is exactly like P, or like P in the relevant respects: it orders a

person Q, who is similar to P in the relevant respects, to do A. As a result

of the applications of prescriptivity and universalizability, every imperative

that is applied to a particular person in a particular circumstance induces a

large number of imperatives, which are applied to similar persons in similar

1The explanation of universalizability presented here is partly indebt to Chapter 9 in
Sen (1970b), which gives an excellent review of universalizability.
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circumstances. Furthermore, it is noted that those imperatives are strategi-

cally related: a person cannot make a moral judgment without considering

what actions other persons choose following their moral judgements. It is

therefore not clear what outcome results from those imperatives, and it is

also doubtful if those imperatives, which are strategically interdependent, are

compatible2.

By applying technique familiar from social choice theory, this paper ex-

plores the meaning of prescriptivity and universalizability and clari�es its

implications on social behavior. We use a normal-form game specifying a set

of feasible actions and preferences for each member. We are interested in

what we call a moral code, which is de�ned as a rule that speci�es whether a

given strategy, an assignment of a probability to each action, is socially ac-

ceptable for a given member in a given situation. Thus, whether it is all right

for you to choose a certain strategy depends on the situation. In our con-

text, the �situation�consists of the game and other members�strategies. We

denote this as mi 2 Fi(G;m�i), which says that mi is a socially acceptable

strategy for individual i if the game is G and the vector of other individuals�

strategy is m�i = (mj)j 6=i. The entry of m�i in the formula comes from the

observation that the social acceptability of a behavior often depends on the

behavior of other individuals. Whether it is all right to drive at 50mph on a

highway depends on the average speed on the road in the particular situation.

While legal, driving at 50mph may not be considered appropriate by other

drivers if they are all driving at 70mph. Similarly, whether it is all right to

spend six months to write a referee report for a paper depends on the average

in the �eld. How much you should spend for a gift depends on the amount

spent by other people in your circle. Since G and m�i enter the formula, a

moral code as de�ned here is a generator of social judgements, generating

instructions for each possible situation. Therefore, the social norm for drivers

2Hare argues, as Harsanyi (1955) does, that the combination of universalizability and
prescriptivity leads to a certain form of utilitarianism, namely, preference utilitarianism
(Hare 1981). But his argument ignores strategic interdependency of moral judgements.
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on highways and the social norm for referees may be generated by a single

moral code. But a single moral code may not govern all situations. The

moral code may di¤er across di¤erent regions, organizations, and circles.

We assume that if a player has more than one socially acceptable strate-

gies, he choose one that he prefers the most. This suggests the following

equilibrium concept. Given a moral code, a fair play equilibrium is a strat-

egy pro�le where each player chooses his most preferred socially acceptable

strategy given the other players�strategy pro�le. The equilibrium concept

is an application of the social equilibrium of Debreu (1952) when a player�s

strategy set is constrained by the moral code. It is noted that di¤erent moral

codes may generate di¤erent fair play equilibria in the same game.

The two concepts, moral code and fair play equilibrium, capture pre-

scriptivity because a moral code prescribes players to choose from the set of

socially acceptable strategies. Universalizability is captured by axioms that

reasonable moral codes are expected to satisfy, which can be described brie�y

as follows.

Anonymity says that all players should be treated in the same way. If a

person is allowed to take a certain strategy in a situation, the same strategy

should be allowed to you in the situation where your position is the same as

the person�s in the previous situation.

Welfare nondiscrimination says that what matters ultimately for the so-

ciety is the members�welfare, and therefore a pair of strategies or games

should be treated in the same way if they are equivalent in terms of welfare.

For example, if a person�s hairstyle does not a¤ect anyone�s welfare including

his own, then the moral code should also be indi¤erent about his choice of

hairstyle. We also require monotonicity, which ensures that social correctness

is associated positively, not negatively, with welfare.

Independence says that Fi(G;m�i) is independent of the payo¤s at strat-

egy pro�les where m�i is not chosen. By de�nition, Fi(G;m�i) is relevant

only if other players choose m�i. Thus, the axiom says, situations where
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the other players�strategy pro�le is not m�i are counter-factual and should

be immaterial for Fi(G;m�i). The requirement is natural in our framework

since what the moral code determines is whether one�s strategy is a socially

acceptable response to other players�strategies3.

Lastly, e¤ectiveness says that it should be feasible for all players to follow

the moral code simultaneously. That is, for any game, there should exist a

pure strategy pro�le where no one violates the moral code.

An important feature of these axioms is that they do not de�ne social

correctness directly. They rather formulate consistency in what a moral code

prescribes across situations and players. The basic form of the axioms is "if it

is socially acceptable for player P to choose strategy A in situation S, then

it should be acceptable for player P 0 to choose action A0 in situation S 0,"

as in the quotation from Sidgwick (1907). Hare (1981) seems to be using

universalizability in the sense to refer to anonymity, not referring to our

other axioms. But we interpret here universalizability in a broader sense, as

a consistency requirement in moral judgements across situations and players.

The axioms, perhaps except for e¤ectiveness, are familiar in social choice

theory4. A di¤erence is that social choice theory is concerned with mappings

specifying the outcome or orderings over possible outcomes. We are, on

the other hand, concerned with mappings specifying the set of permitted

strategies for each player. In particular, our mappings, i.e., social codes, do

not specify the outcome directly. The outcome is determined indirectly as

an equilibrium.

We have three theorems, Theorems 1-3. The �rst two demonstrate a

close association of the fair play equilibria with Nash equilibria and the third

shows a welfare property of fair play equilibrium. The �rst two are the most

3Although the axiom resembles Arrow�s independence of Irrelevant Alternatives (1963),
it is not a requirement of informational economization.

4For an introduction to social choice theory, see, e.g., Sen (1986), Moulin (1988),
Austen-Smith and Banks (1999), and Campbell and Kelly (2002).
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important so that we explain the details here. Theorem 1 shows that, under

any moral code that satis�es the axioms, fair play equilibria are necessarily

Nash equilibria in any game. Thus at any fair play equilibrium, the moral

code is never binding for any player. We also show that strict Nash equilibria

are all fair play equilibria. Thus a moral code cannot eliminate any strict

Nash equilibrium. These results together imply that if there is any di¤erence

between the set of fair play equilibria and that of Nash equilibria, it consists

of Nash equilibria where some players have multiple best replies. If the moral

code satis�es a mild continuity condition, the di¤erence disappears: the set

of fair play equilibria coincides with the set of Nash equilibria (Theorem 2).

The basic intuition of the result is as follows. If a moral code does not

lead to a Nash equilibrium, our axioms (in particular, independence and

monotonicity) imply that there must be a game where some player is required

to sacri�ce his payo¤s for the sake of other players�payo¤s. Then we can �nd

a game in which the moral code induces a cycle where each player is required

to sacri�ce his own payo¤s and it is not possible for all players to follow the

moral code simultaneously, which is a violation of e¤ectiveness axiom. This

observation therefore leads to a conclusion that an admissible moral code

permits players to take at least one of his best replies, which in turn implies

that any strict Nash equilibrium is a fair play equilibrium and any fair play

equilibrium is a Nash equilibrium. The proof therefore resembles that of

Arrow�s impossibility theorem (Arrow 1963), where if a voter is decisive over

a single pair of alternatives, Arrow�s axioms imply that the voter is actually

decisive over all pairs of alternatives.

A way of escaping from the negative results of Theorems 1 and 2 is to

abandon independence or the combination of weak Independence with the

equivalent utility representation axiom that prevents any kind of interper-

sonal welfare comparison. Abandoning these axioms makes way for two ad-

missible moral codes: One is called the Utilitarian code, based on the same

idea as that in utilitarian rules. The other is called the Lexi-min code, base on
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the same idea as that in Lexi-min rule due to Sen (1970b), a lexicographic

completion of Rawls�(1972) di¤erence principle. We show that these code

work: both the codes have fair play equilibria for any game. Although ax-

iomatic characterization of the codes is the issue that remains in future5, we

stress here that our approach is open to the subject of seeking the possibility

of admissible codes that make interpersonal welfare comparison possible.

These informational bases are often called �welfarism�whether cardinality

and interpersonal comparability of utilities are allowed. In other words, so-

cial decision based on welfarism makes use of utility information and excludes

others. In the literature we �nd other types of informational bases, that is,

non-utility informational bases such as rights and procedures. The most im-

portant contribution to these bases was introduced by Sen (1970a) to show

impossibility of a Paretian liberal. Subsequent discussions have been dedi-

cated to the de�nition of rights. In the debate there are two main streams,

one based on the social choice theoretic framework and the other on game

theoretic one à la Nozick (1974)6. In the real world rights of others are often

considered to give constraints on our behavioral decisions. We are not free to

give risks and fears to others if we accept the value of democracy. Procedures

are also important bases to restrict our decision and judgment in relation to

our behavior. Our behavior is often prohibited from the reason not to observe

rules and procedures. We will incorporate such informational bases into our

framework and explore the e¤ects on the judgment of our behavior in our

future work.

Lastly, we mention a few papers that are closely related to ours. Peña

(2003) develops a di¤erent axiomatic analysis of moral codes. Moral code

there does not restrict actions that are available to players. It rather cre-

5A signi�cant amount of literature deals with the axiomatizations of the utilitarian
and lexi-min rules. d�Aspremont (1985), Bossert and Weymark (2004), d�Aspremont and
Gevers (2002), and Sen (2011) are excellent surveys.

6See for example, Gaertner, Pattanaik and Suzumura (1992), Sen (1992, 1996, 2011),
Suzumura (1996, 2000, 2011)
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ates moral values that in�uence players�payo¤s and change rational choices:

When a player chooses a good action he receives moral rewards, and when

he chooses a bad action he su¤ers from moral penalties.

Since our result gives an axiomatization of Nash equilibria, it is similar

to the results of Peleg and Tijis (1996), Peleg et.al. (1996) and Salonen

(1992). The �rst two use a reduced game property with a variable number of

agents, while the last one uses axioms in axiomatic bargaining theory with a

�xed number of agents. Our paper di¤ers from these papers in at least two

respects. First, we do not use a variable population setting. Second, their

solution concept chooses social outcomes directly as in social choice theory

This paper is organized as follows. Section 2 provides notation and de�-

nitions, where we give the de�nition of moral code and fair play equilibrium.

Section 3 de�nes our axioms. Section 4 states and proves a few prelimi-

nary results concerning the axioms. Section 5 states our main results and

illustrates their proofs using a simple case with two players and two actions.

Examples in Section 6 serve the interpretation of the main results. Section 7

introduce the Utilitarian and the Lexi-min codes. Section 8 is the conclusion.

Section 9 proves the main results.

2 Model

The set of players is �xed and denoted by N = f1; 2; :::; ng where n � 2. Let

 be an in�nite set of potential actions (pure strategies). A (�nite) game is

a list

(X; u) := ( �
i2N
Xi; (ui)i2N)

where for all i 2 N , Xi � 
 is a non-empty �nite set of actions and ui is
a utility function de�ned over X. An element of X is called an action pro�le

and denoted x = (x1; :::; xn) 2 X. We call (ui)i2N a utility pro�le. The class
of all games is denoted as �.
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Let a game (X; u) 2 � be given. A (mixed) strategy of player i, denoted
by mi, is a probability distribution over i�s actions. Thus mi is a function

fromXi to [0; 1] that associates with each xi 2 Xi a probabilitymi(xi) 2 [0; 1]
such that

P
xi2Xi

mi(xi) = 1. We write mi = (mi(xi))xi2Xi. Let M(Xi) be the

set of mixed strategies generated from Xi, which is simply written as Mi

wherever Xi is apparent in the context. We let M = �
i2N
Mi. A typical

element of M is written as m = (m1; :::;mn) or m = (mi)i2N , and called

a (mixed) strategy pro�le7. Each player i has an expected utility function

de�ned over M given by

vi(m) :=
P
x2X

Q
j2N
mj(xj)ui(x) for all m 2M

where
Q
j2N
mj(xj) is the probability thatm assigns to x = (x1; :::; xn) 2 X.

When the utility function over pure strategies is denoted u0i, the associated

utility function over mixed strategies is denoted v0i, and so on. We denoteQ
j2Nnfig

Xj and
Q

j2Nnfig
Mj by X�j and M�j respectively. Typical elements of

X�j and M�j are denoted by x�j and m�j.

Given a subset Yi � Xi for all i and Y :=
Q
i2N
Yi, let uijY denote the

restriction of ui to Y . We can then de�ne a pro�le ujY = (u1jY ; :::; unjY ) and

a game (Y; ujY ). We simply write (Y; u) instead of (Y; ujY ) if there is no risk

of confusion.

Given (X; u) 2 �, i 2 N and m�i 2 M�i, let BRi(X; ui;m�i) denote

the set of best replies to m�i for player i: BRi(X; ui;m�i) := fmi 2 Mi :

vi(mi;m�i) � vi(m0
i;m�i) 8m0

i 2Mig.

De�nition A moral code is a correspondence F that associates with each

game (X; u) 2 �, each i 2 N , and each m�i 2 M�i a non-empty subset

Fi(X; u;m�i) �Mi.

7By de�nition, an action pro�le is also a strategy pro�le.
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Here Fi(X; u;m�i) is the set of i�s strategies that are considered as fair

or socially acceptable in game (X; u) when the other players�strategies are

m�i. We require this set to be non-empty; for each player and each possible

situation, there exists at least one socially acceptable strategies.

We assume that players respect a given moral code; i.e., players do not

choose a socially unacceptable strategy, although choosing such a strategy

is physically possible. In practice, people choose to respect the given moral

code either because a violation of the code results in a punishment from

other people, or people have an intrinsic desire to comply with the code

(either because they appreciate the ideas behind the code or they have been

educated to have such a desire). Since the issue of these incentives is not

our main concern in this paper, we simply assume that players choose only

socially acceptable strategies.

A special case is where a moral code speci�es only a set of pure strategies

and allows any randomization among those pure strategies. That is,

Fi(X; u;m�i) = fmi 2Mi : supp(mi) � F �i (X; u;m�i)g

where supp(mi) denotes the support of mi and F �i (X; u;m�i) � Xi is the set

of pure strategies that are fair replies to m�i. Our results are valid for, but

not limited to, this subclass of moral codes.

A moral code may specify more than one strategy as socially acceptable

and does not necessarily deprive players of their free choice completely. The

typical form of a moral code is not �one ought to do this�but �one ought not

to do these.�When there are multiple strategies that are socially acceptable,

we assume that the player chooses a strategy that is most preferred within the

set of socially acceptable strategies. This consideration suggests the following

equilibrium concept.

De�nition Given a moral code F and a game (X; u), a strategy pro�lem is

a fair play equilibrium if and only if, for each player i, mi is a most preferred
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strategy in Fi(X; u; xi) for vi.

The set of fair play equilibria is denoted FPE(X; u; F ). Thus FPE(X; u; F )

consists ofm 2M such that for all i 2 N; mi 2 Fi(X; u;m�i) and vi(mi;m�i) �
vi(m

0
i;m�i) for all m0

i 2 Fi(X; u;m�i).

At a fair play equilibrium, a player may have better replies, but none of

which is socially acceptable. It is also noted that di¤erent moral codes may

generate di¤erent fair play equilibria in the same game.

3 Axioms

We are interested in characterizing fair play equilibria when the moral code

satis�es the following axioms.

The �rst axiom is anonymity, which says that the name of the players

should not matter. Let a permutation be � : N �! N . Given an action

pro�le x, we de�ne x� by x��(i) := xi. That is, x
� is the action pro�le in which

player �(i)�s action coincides with xi. Similarly, given a mixed strategy pro�le

m, we de�ne m� by m�
�(i) := mi.

De�nition Amoral code F satis�es anonymity if for all (X; u); (X 0; u0) 2 �
and all permutations � : N �! N , if

X 0
�(i) = Xi and u0�(i)(x

�) = ui(x) 8i 2 N;8x 2 X (1)

then for all i 2 N and all m 2M , Fi(X; u;m�i) = F�(i)(X
0; u0;m�

��(i)):

It can be easily veri�ed that (1) implies v0�(i)(m
�) = vi(m) for all m 2M .

Thus (X 0; u0) is the game generated from (X; u) by renaming player i as �(i).

For example, consider the following pair of games:
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Player 2

Player 1

a b c

A 4; 4 2; 5 3; 7

B 6; 0 0; 0 0; 7

Player 2

Player 1

A B

a 4; 4 0; 6

b 5; 2 0; 0

c 7; 3 7; 0

These games are identical except that the players are interchanged; player

i = 1; 2 in the left game is identical to player j 6= i in the right game. Suppose
that, in the left game, a mixed strategy (A; 1

3
; B; 2

3
) of player 1 is a socially

acceptable response to 2�s strategy (a; 1
6
; b; 1

3
; c; 1

2
). Then anonymity says

that, in the right game, the same strategy (A; 1
3
; B; 2

3
), now de�ned for player

2, is a socially acceptable response to player 1�s strategy (a; 1
6
; b; 1

3
; c; 1

2
).

To state the next axiom, we �rst introduce a de�nition. We writemi ' m0
i

if these strategies are identical in term of welfare for all players, regardless

of the strategies of j 6= i. Formally,

De�nition Given (X; u) 2 � and i 2 N , strategies mi 2 Mi and m0
i 2 Mi

are welfare-equivalent, denoted mi ' m0
i, if vj(mi;m�i) = vj(m

0
i;m�i) for all

j 2 N and all m�i 2M�i.

The next axiom says that welfare-equivalent strategies should be treated

equally.

De�nition A moral code F satis�es welfare nondiscrimination if for all

(X; u) 2 �, the following conditions are satis�ed.
1. For all m;m0 2M such that mi ' m0

i for all i 2 N (possibly mi = m
0
i

for some i), then for all i 2 N , mi 2 Fi(X; u;m�i)() m0
i 2 Fi(X; u;m0

�i).

2. For all m 2 M , all i 2 N , and all yi 2 Xi such that mi ' yi and

mi(yi) = 0,

2.1. Fi(Xinfyig � X�i; u;m�i) = Fi(X; u;m�i)nMi(yi), where Mi(yi) =

fmi 2Mi : mi(yi) > 0g,and
2.2. Fj(Xinfyig �X�i; u;m�j) = Fj(X; u;m�j) for all j 6= i.
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Condition 1 says that the moral code does not distinguish welfare-equivalent

strategies. Condition 2 considers a case where there is a pure strategy yi that

has a welfare-equivalent substitute strategy mi whose support does not in-

clude yi. In this case, yi is redundant in the game in the sense that for

any mixed strategy whose support includes yi, there is a welfare-equivalent

substitute whose support does not include yi. Condition 2 says that, in this

case, deleting yi from the game makes no essential di¤erence on the set of fair

plays for any player. For player i, the set of fair plays is reduced by simply

removing those strategies whose support includes yi. For players j 6= i, the
set of fair plays does not change.

By applying condition 1, condition 2.2 is generalized as follows:

2.2�. Fj(Xinfyig � X�i; u;m�j) = Fj(X; u;m�fi;jg;m
0
i) for all j 6= i and

all m0
i ' mi in (X; u).

As an illustration, consider the following pair of games.

Player 2

Player 1

a b

A 6; 0 1; 6

B 2; 8 3; 4

C 4; 4 2; 5

Player 2

Player 1

a b

A 6; 0 1; 6

B 2; 8 3; 4

(2)

It follows from Lemma 1 (see Section 9) that (A; 1
2
; B; 1

2
) and C are

welfare-equivalent. Welfare nondiscrimination requires that (A; 1
2
; B; 1

2
) is so-

cially acceptable if and only if C is (condition 1 when i = 1 and m�i = m
0
�i).

Welfare nondiscrimination also says that whether player 1 plays (A; 1
2
; B; 1

2
)

or C does not a¤ect socially acceptable strategies for player 2 (condition 1

when i = 2 and mi = m
0
i).

The game on the right is obtained from the left by deleting C. Since C is

a replica of (A; 1
2
; B; 1

2
), there is a sense in which these games are identical.

This is why welfare nondiscrimination (condition 2) also requires that at
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any strategy pro�le that exists in both games, a player�s strategy is socially

acceptable in the left game if and only if it is socially acceptable in the right

game. For example, (A; 1
2
; B; 1

2
) is a socially acceptable response to (a; 1

2
; b; 1

2
)

in the left game if and only if it is the case in the right game.

Welfare nondiscrimination is a straightforward application of the wel-

farism principle in social choice theory: what matters is individuals�welfare

and therefore alternatives should not be distinguished if they have identical

welfare consequences. There are two separate issues: how to treat welfare-

equivalent strategies (condition 1) and how to respond if welfare-equivalent

actions are deleted or added (condition 2). Condition 2 ensures a minimum

condition of consistency across games that have di¤erent numbers of actions.

It rules out moral codes that treat two games di¤erently only because they

have di¤erent numbers of actions.

The next axiom, independence, says that whether player i�s strategy is a

socially acceptable response to m�i is independent of preferences over strat-

egy pro�les where m�i is not played. Let a game (X; u) 2 � be given. For
each player i, the preference <vi induced from i�s utility function vi is a

binary relation on M given by

m <vi m0 () vi(m) � vi(m0) 8m;m0 2M:

De�nition A moral code F satis�es independence if for all (X; u); (X; u0) 2
�, all i 2 N , and all m�i 2 M�i, if for all j 2 N , <vj and <v0j are identical
on f(mi;m�i) : mi 2Mig, then Fi(X; u;m�i) = Fi(X; u

0;m�i).

This is a natural requirement since what a moral code prescribes to a

player is conditional on other players�behavior. By de�nition, Fi(X; u;m�i)

is relevant only if other players play m�i. Given m�i, strategy pro�les in

Mnf(mi;m�i) : mi 2Mig are counter-factual and hence deemed immaterial.
For this axiom, it is critical that what a moral code decides is whether

one�s strategy is a socially acceptable response to others�behavior. Thus a
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judgement that a player�s strategy is socially unacceptable cannot be justi�ed

on the ground that it may induce bad behavior of others. Since other players�

behavior is held �xed, one can reasonably say that what happens if they

behave di¤erently is irrelevant.

A weaker version of independence is de�ned by replacing �<vj and <v0j�
with �vj and v0j�and thus restricting its scope to the case where cardinal

utilities are also identical over the relevant set.

De�nition Amoral code F satis�es weak independence if for all (X; u); (X; u0) 2
�, all i 2 N , and all m�i 2 M�i, if for all j 2 N , vj and v0j are identical on
f(mi;m�i) : mi 2Mig , then Fi(X; u;m�i) = Fi(X; u

0;m�i).

As we show in the next section (Proposition 3), the two versions are

equivalent under the next axiom.

De�nition A moral code F satis�es invariance to equivalent utility repre-

sentations if for all (X; u); (X; u0) 2 �, if for all j 2 N , there are some real
values, �j > 0 and �j, such that u

0
j(x) = �juj(x)+�j for all x 2 X, then for

all i 2 N , and all m�i 2M�i, Fi(X; u;m�i) = Fi(X; u
0;m�i).

Obviously we have v0j(m) = �jvj(m) + �j for all m 2 M . This axiom
says that a judgement that a player�s strategy is socially acceptable is not

in�uenced by any positive a¢ ne transformations of utility functions.

The next axiom, monotonicity, says that if a player�s strategy is socially

acceptable at a strategy pro�le m under a utility pro�le u, it remains so

under a utility pro�le u0 if the change from u to u0 only decreases utilities at

strategy pro�les m0 6= m.

De�nition Amoral code F satis�es monotonicity if for all (X; u); (X; u0) 2
�, all m 2M , and all i 2 N , if mi 2 Fi(X; u;m�i) and

v0j(m) = vj(m) and v
0
j(m

0) � vj(m0) 8m0 6= m;8j 2 N; (3)

then mi 2 Fi(X; u0;m�i).
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Remark 1 From the perspective of social choice theory, it might be more

natural to replace (3) with the following:

vj(m) � vj(m0) =) v0j(m) � v0j(m0); (4)

vj(m) > vj(m
0) =) v0j(m) > v

0
j(m

0) (5)

The condition (4)-(5) says that the change from u to u0 only raises the

relative ranking of m in individuals�preferences. The monotonicity axiom

with (3) being replaced with (4)�(5) is a natural translation of Arrow�s con-

dition of positive association (Arrow, 1963). Since (4)�(5) is weaker than (3),

the axiom of monotonicity is stronger with (4)�(5) than with (3). Our main

results remain valid with the stronger version of monotonicity.

The next axiom, e¤ectiveness, says that, for any game, there exists at

least one pure strategy pro�le where all players play fair.

De�nition A moral code F satis�es e¤ectiveness if for all (X; u) 2 �, there
exists x 2 X such that

xi 2 Fi(X; u; x�i) 8i 2 N: (6)

Thus a violation of e¤ectiveness means that there exists a game where

there is no pure strategy pro�le where all players follow the moral code.

The axiom represents a basic requirement that a moral code�s prescriptions

to di¤erent players should be compatible. An action pro�le that satis�es

(6) is called a fair play pro�le. E¤ectiveness is weaker than demanding the

existence of a pure-strategy fair play equilibrium, since (6) is only a necessary

condition for x to be a pure-strategy fair play equilibrium. If there exists

no pure-strategy fair play pro�le in a game (X; u) 2 �, then mixed-strategy
pro�les m 2 M such that mi 2 Fi(X; u;m�i) for all i 2 N , even if they
exist, are not grounded on moral rightness, because none of the pure-strategy
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pro�les x with �
i2N
mi(xi) > 0 is a fair play pro�le; m never leads players to

an action pro�le at which they all take socially acceptable actions.

The last axiom is continuity. Given a set of action pro�les X, let U(X)

denote the set of all utility functions de�ned on X. Any pro�le of utility

functions u = (ui)i2N 2 U(X)N can be represented by a vector of njXj
numbers. Thus U(X)N can be regarded as RnjXj.

De�nition A moral code F satis�es continuity if for all (X; u) 2 �, all m 2
M , all i 2 N , and all sequences (u�)1�=1 from U(X)N , if mi 2 Fi(X; u� ;m�i)

for all � and u� ! u as � !1, then mi 2 Fi(X; u;m�i).

This is the upper-hemi continuity of the correspondence Fi(X; u;m�i)

with respect to u. It says that for any strategy mi, the set of utility-function

pro�les for which the strategy is socially acceptable is a closed set. Thus,

at the boundary of the area where mi is socially acceptable, the moral code

takes the permissive side.

There exist moral codes satisfying all the axioms: see Examples 1 and 2

in Section 6.

4 Preliminary Results

We state here four preliminary results concerning the axioms. The �rst

two propositions, Propositions 1 and 2, are concerned with welfare nondis-

crimination. An important implication of welfare nondiscrimination is what

corresponds to neutrality in social choice theory. Neutrality, in our context,

requires that two games should be treated in the same way if they di¤er

merely in the labeling of actions. Formally,

De�nition A moral code F is neutral if for all (X; u), (X 0; u0) 2 �, if there
exists a bijection �i : Xi ! X 0

i for all i 2 N such that u0i(�1(x1); : : : ; �n(xn)) =
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ui(x) for all x 2 X,8 then for all m 2M and all i 2 N ,

mi 2 Fi(X; u;m�i)() �i(mi) 2 Fi(X 0; u0; �(m)�i);

where �i(mi) is a mixed strategy that plays �i(xi) 2 X 0
i with probability

mi(xi) for each xi, i.e., the composition of ��1i : X
0
i ! Xi andmi : Xi ! [0; 1];

and �(m)�i denotes the pro�le of �j(mj) for all j 6= i.

Neutrality is strictly weaker than welfare nondiscrimination because neu-

trality does not relate games with di¤erent numbers of actions: neutrality

allows the pair of games in (2) to receive totally di¤erent treatments.

Proposition 1 Welfare nondiscrimination implies neutrality.

Proof. Let F be a moral code satisfying welfare nondiscrimination, and let
(X; u); (X 0; u0) 2 � be such that the assumption in the de�nition of neutrality
is satis�ed. Assume, without loss of generality, that the games are identical

except for the names of player 1�s actions: For all i 6= 1, X 0
i = Xi and

�i(xi) = xi.
9 We further assume X1 \X 0

1 = ;. The case of X1 \X 0
1 6= ; can

be proved by repeating the argument that follows.10

Now we start with (X; u) and add X 0
1 to 1�s action set so that x1 and

�1(x1) are welfare-equivalent for all x1 2 X1. Denote the constructed game

by ((X1 [ X 0
1) � X�1; u

00). Welfare nondiscrimination implies that for all

m 2M ,
m1 2 F1(X; u;m�1)() m1 2 F1((X1 [X 0

1)�X�1; u
00;m�1)

() �(m1) 2 F1((X1 [X 0
1)�X�1; u

00;m�1)

() �(m1) 2 F1(X 0; u0;m�1):

For all i 6= 1,
8While this is stated for pure-strategy pro�les, it implies v0i(�1(m1); : : : ; �n(mn)) =

vi(m) for all m 2M .
9The general case can be proved by repeating the argument for the other players.
10Speci�cally, we choose any set Y � 
 such that jY j = jX1j = jX2j, Y \X1 = ;, and

Y \X2 = ;, and then apply our argument �rst to the pair (X1; Y ) and (Y;X2).
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Fi(X; u; (m1;mNnf1;ig)) = Fi((X1 [X 0
1)�X�1; u

00; (m1;mNnf1;ig))

= Fi((X1 [X 0
1)�X�1; u

00; (�1(m1);mNnf1;ig))

= Fi(X
0; u0; (�1(m1));mNnf1;ig)):

Proposition 2 Let G = (X; u) 2 � and i 2 N be given. Suppose that there

exist m�
i 2 Mi and yi 2 Xi such that m�

i ' yi and m�
i (yi) = 0. Then for all

mi 2Mi, there exists m0
i 2Mi such that m0

i(yi) = 0 and m
0
i ' mi.

Proof. Let m0
i be de�ned by m

0
i(yi) = 0 and

m0
i(xi) = mi(xi) +m

�
i (xi)mi(yi) 8xi 6= yi:

Then for all m�i 2M�i and all j;

vj(m
0
i;m�i) =

P
xi 6=yi

[mi(xi) +m
�
i (xi)mi(yi)] vj(xi;m�i)

=
P
xi 6=yi

mi(xi)vj(xi;m�i) +mi(yi)vj(m
�
i ;m�i)

=
P
xi 6=yi

mi(xi)vj(xi;m�i) +mi(yi)vj(yi;m�i) = vj(mi;m�i):

The proposition says that for every player, deleting an action yi that is

welfare-equivalent to a strategy whose support does not include yi does not

make any change as far as we are only concerned with utility levels players

enjoy, although it changes the set of strategies. This proposition makes

welfare-nondiscrimination more appealing.

The next two propositions, Propositions 3 and 4, are concerned with log-

ical relationship between independence, weak independence, and invariance

to equivalent utility representations.

Proposition 3 For any (X; u); (X; u0) 2 �, any i; j 2 N , and any m�i 2
M�i, if <vj and <v0j are identical on f(mi;m�i) : mi 2 Mig, then there are
some constants �j > 0 and �j such that for all mi 2 Mi, v0j(mi;m�i) =

�jvj(mi;m�i) + �j:

Proof. This follows from Mas-Colell et. al.�s Proposition 6.B.2 (p173) ap-

plied to f(mi;m�i) : mi 2Mig
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Proposition 4 A moral code satis�es independence if and only if it satis�es
weak independence and invariance to equivalent utility representations.

Proof. The "only if" part is obvious, so we only prove the "if" part. Let
(X; u); (X; u0) 2 �; i 2 N , and m�i 2 M�i be as in the assumption in the

de�nition of independence. By Proposition 3, for all j 2 N , there exist �j > 0
and �j such that for all mi 2 Mi, v0j(mi;m�i) = �jvj(mi;m�i) + �j. For all

j 2 N , de�ne v00j by v00j (m) = �jvj(m) + �j for all m 2 M . Then invariance
to equivalent utility representations and weak independence imply

Fi(X; u;m�i)
invari.
= Fi(X; u

00;m�i)
weak.I.
= Fi(X; u

0;m�i).

5 Main Results

We have three main results. The �rst one states that if a moral code satis-

�es all the axioms de�ned in Section 3, except for continuity, then for any

player, there always exists a socially acceptable strategy that is also an un-

constrained best reply. That is, while the moral code may prohibit a player

from choosing some of his best replies, it never prohibits all. This result

immediately implies that under the moral code, all fair play equilibria are

necessarily Nash equilibria, and conversely, all strict Nash equilibria are nec-

essarily fair play equilibria. Formally, let NE(X; u) and SNE(X; u) denote

the set of Nash equilibria and strict Nash equilibria, respectively. Then

Theorem 1 If a moral code F satis�es anonymity, welfare nondiscrimi-

nation, weak independence11, monotonicity, and e¤ectiveness, then for all

(X; u) 2 �, all i 2 N and all m�i 2M�i,

Fi(X; u;m�i) \BRi(X; u;m�i) 6= �: (7)

11By Proposition 4, independence can be replaced with weak independence and invari-
ance to equivalent utility representations.
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This implies that for all (X; u) 2 �,

SNE(X; u) � FPE(X; u; F ) � NE(X; u): (8)

(7) indeed implies the �rst inclusion in (8) since at any strict Nash equi-

librium, a best reply is unique and hence must be socially acceptable. To see

that the second inclusion in (8) is also implied by (7), suppose that a fair play

equilibrium is not a Nash equilibrium. Then some player is not playing an

unconstrained best reply. This is a contradiction with fair play equilibrium

since there exists an unconstrained best reply that is also socially acceptable.

If a moral code satis�es not only the axioms of Theorem 1 but also conti-

nuity, the set of fair play equilibria coincides with the set of Nash equilibria,

which is our main result.

Theorem 2 If a moral code F satis�es continuity and all the axioms in

Theorem 1, then for all (X; u) 2 �,

FPE(X; u; F ) = NE(X; u):

Once Theorem 1 is proved, the proof of Theorem 2 is not di¢ cult. The

rough sketch of the proof is as follows: Let m 2 NE(X; u). It is possible to
construct a sequence of games (X; u�) such that for every i, mi is a unique

best reply to m�i, and (X; u�) �! (X; u). Then we have m 2 SNE(X; u�)
for all � and hence Theorem 1 means m 2 FPE(X; u� ; F ) for all �. Continu-
ity then yields m 2 FPE(X; u; F ), which shows NE(X; u) � FPE(X; u; F ).
See Section 9 for the detail.

Since the proof of Theorem 1 is long and involved, we here give a proof

for the case of two players with two actions; the general proof is given in

Section 9. Suppose that there are two players (1 and 2) and consider a game

(X; u) where the action set is X1 = fA;Bg and X2 = fa; bg. The proof of
(7) goes on with three steps.

Step 1: (7) holds when m�i consists of pure strategies.
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By noting anonymity and neutrality, it su¢ ces to show F1(X; u; a) \
BR1(X; u; a) 6= ;. Suppose on the contrary that

F1(X; u; a) \BR1(X; u; a) = ; (9)

This implies BR1(X; u; a) is fAg or fBg (otherwise, BR1(X; u; a) =M1).

Without loss of generality, assume that it is fAg, i.e., u1(A; a) > u1(B; a).

Then (9) implies that

A =2 F1(X; u; a) (10)

That is, for all m1 2 F1(X; u; a);m1(A) < 1.

By invariance to equivalent utility representations, we can normalize each

player�s payo¤s by setting u1(B; a) = 0 and u2(A; a) = 0. By independence,

the values ui(�; b) do not a¤ect (9). Altogether, we can assume that the payo¤
matrix is given by

a b

A 1; 0 0; y

B 0; y 1; 0

(11)

where y 2 R. There are two cases.
Case 1: y � 0. Then, let us replace y with y0 > 0 and denote the resulting

utility pro�le by u0. Then (10) remains true under u0: i.e., A =2 F1(X; u0; a).
By way of contradiction, suppose that A 2 F1(X; u0; a). Since the change
from u0 to u only decreases payo¤s at m 6= (A; a), monotonicity implies

A 2 F1(X; u; a), a contradiction, which shows that A =2 F1(X; u0; a). Since
y0 > 0, the result shows that it su¢ ces to consider the next case.

Case 2: y > 0. By invariance to equivalent utility representations, we

can set y = 1. Since A =2 F1(X; u; a), (A; a) is not a fair play pro�le. By
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neutrality, (B; b) is not a fair play pro�le either. By anonymity, neither (A; b)

nor (B; a) is a fair play pro�le. Thus there exists no action pro�le that is a

fair play pro�le, which is a contradiction with e¤ectiveness.

Step 2: The result of Step 1 extends to games where an action c =2 fa; bg
is added to X2.

Consider a game ( eX; eu) 2 � with eX = X1 � (X2 [ fcg). We show that
F1( eX; eu; a) \ BR1( eX; eu1; a) 6= ;.
Let u0 be a utility pro�le that is identical to eu on X and such that

u0i(x1; c) = eui(x1; a) for all x1 and all i. Under u0, we have c ' a. Inde-

pendence and welfare nondiscrimination imply that

F1( eX; eu; a) Indep.= F1( eX; u0; a) welfare.non.= F1(X; u
0jX ; a):

By Step 1, F1(X; u0jX ; a)\ BR1(X; u01jX ; a) 6= ;. Since BR1(X; u01jX ; a) =
BR1( eX; eu1; a), we obtain F1( eX; eu; a) \ BR1( eX; eu1; a) 6= ;, as desired.
Step 3: (7) holds when m�i contains non-pure strategies.

Given a non-pure strategym2, we show that F1(X; u;m2)\BR1(X; u1;m2) 6=
;. Take an action c =2 fa; bg and de�ne a game (X 0; u0) byX 0 = X1�(X2[fcg)
and, for all (x1; x2) 2 X 0 and for all i = 1; 2,

u0i(x1; x2) =

(
ui(x1; x2) if x2 6= c;
vi(x1;m2) if x2 = c:

For this game, c ' m2 (see Lemma 1). Step 2 implies F1(X 0; u0; c) \
BR1(X

0; u01; c) 6= ;. This together with welfare nondiscrimination implies
F1(X

0; u0;m2)\BR1(X 0; u01;m2) 6= ;. Deleting c and invoking welfare nondis-
crimination, we obtain F1(X; u;m2) \ BR1(X; u1;m2) 6= ;.
The general proof in Section 9, in particular that of Lemma 3, is consider-

ably more complicated. One reason for the complication is that the violation

of (7) may be at an action pro�le where player i has multiple best replies,

and other players may have complex preferences over i�s best replies. This

complicates the proof since we then need to maintain the same preference

structure along a cycle that shows the non-existence of fair play pro�le. An-
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other source of complication is that we need to change every player�s action

to complete a cycle.

The relation between Theorem 1 and Arrow�s impossibility theorem (1963)

is elusive. Our result relies on games with a cyclic nature, just as Arrow�s

result relies on Condorcet�s voting cycle� the well-known preference pro�le

with 3 voters and 3 alternatives where the majority-rule winner does not ex-

ist. It is also interesting to observe that Nash equilibrium can be thought of

as a moral code in which each player is a dictator for his own socially accept-

able actions given the other players�actions. We could easily construct more

�democratic� procedures to determine socially acceptable actions, in such

a way that there may not exist an unconditional best response that is also

socially acceptable (e.g., Example 7 in section 6). However, as in Arrow�s

theorem, all those procedures violate at least one basic axiom.

The cyclic nature of the game in the proof also suggests a relation to the

Liberal Paradox (Sen, 1970). Indeed, a variant of the paradox in Gibbard

(1974) is based on Matching Pennies, although the direction of the cycle

is opposite, i.e., everyone there tries to increase his own payo¤. There is

also a similarity in terms of the framework if one interprets Fi(X; u;m�i) as

the player�s rights. A critical di¤erence is that none of our axioms is about

liberty. Each of our axioms permits Fi(X; u;m�i) to be always a singleton,

in which case the moral code gives no freedom.

The cycle in the game (11) captures situations in which everyone ought

to give an advantage to others. Such situations are often observed when

there is an unpleasant job to be done by someone and everyone wants to

be nice: everyone insists on taking the job. We also often observe situations

where everyone insists on shouldering responsibility, paying a bill, going after

others, etc.

Our previous paper (Miyagawa, Nagahisa, and Suga, 2005) proves Theo-

rems 1 and 2 in the case where only pure strategies are available to players.

Their results can be derived from our present proof. In particular they are
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from direct consequences of Lemma 3 in Section 9.

We turn to the third result concerning a welfare property of fair play

equilibrium.

De�nition Let a game (X; u) be given. A pro�le m 2 M is locally weak

Pareto e¢ cient if for all i 2 N , m is weak Pareto e¢ cient on f(m0
i;m�i) :

m0
i 2Mig.

It directly follows from Theorem 1 that a fair play equilibrium is locally

weak Pareto e¢ cient. This still holds if we relax the assumptions.

Theorem 3 If a code F satis�es independence, monotonicity and welfare

nondiscrimination, then any fair play equilibrium is locally weak Pareto e¢ -

cient.

Proof. It su¢ ces to show that
For any (X; u) 2 �, any i; j 2 N , and any mi;m

0
i 2Mi,

if mi 2 Fi(X; u;m�i) and vj(m0
i;m�i) > vj(mi;m�i) for all j 2 N

then m0
i 2 Fi(X; u;m�i).

Let us take ak =2 Xk for every k 2 N arbitrarily. Lemma 2 assures a game

(X(1); u(1)) 2 � such that
X
(1)
k = Xk [ fakg and ak ' mk for all k 2 N ; and

u(1)jX = u.
Since mi 2 Fi(X; u;m�i), welfare nondiscrimination implies

ai 2 Fi(X(1); u(1); a�i): (12)

Next we de�ne a game (X(1); u(2)) such that for any k 2 N and for any

x 2 X(1);

u
(2)
k (x) =

(
v
(1)
k (m

0
i;m�i) if x = (ak)k2N

u
(1)
k (x) otherwise
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By (12) and monotonicity, we have

ai 2 Fi(X(1); u(2); a�i): (13)

Lemma 2 assures a game (X(1); u(3)) 2 � such that
aj ' mj for all j 6= i and ai ' m0

i;

u(3)jX = u.
A simple computation leads us to that for all k 2 N , v(2) and v(3) induce

the same utility function on the set f(m00
i ; a�i) : m

00
i 2M

(2)
i (=M

(3)
i )g.

Thus (13) and independence imply

ai 2 Fi(X(1); u(3); a�i): (14)

Welfare nondiscrimination is applied to (14), we have

m0
i 2 Fi(X(1); u(3);m�i): (15)

By deleting all ak, the game (X(1); u(3)) reduces to the original (X; u).

(15) and welfare nondiscrimination imply m0
i 2 Fi(X; u;m�i), the desired

result.

6 Examples

This section gives a few examples of moral codes and games. The following

two moral codes satisfy all the axioms in Theorem 2.

Example 1 (Amoral code)
All strategies are always socially acceptable: Fi(X; u;m�i) :=Mi:

Example 2 (Local weak Pareto code)
For all (X; u) 2 �, all i 2 N and all m�i 2 M�i, let Fi(X; u;m�i)

be the set of strategies mi 2 Mi such that there exists no m0
i 2 Mi such
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that vj(m0
i;m�i) > vj(mi;m�i) for all j 2 N . In other words, a strategy

is judged as socially unacceptable if there exists a strategy that makes all

players strictly better o¤. This code is �local�in the sense that m�i is held

�xed when Pareto e¢ ciency is invoked. One can easily verify that this code

also satis�es all the axioms.

Although these two codes look very di¤erent, since they both satisfy all

the axioms in Theorem 2, they satisfy FPE(X; u; F ) = NE(X; u) for all

games.

For these codes, it is possible that ; 6= SNE(X; u) ( FPE(X; u; F ) for
some game. For example, consider the following game:

a b

A 2; 2 1; 1

B 1; 1 1; 1

Then SNE(X; u) = f(A; a)g ( FPE(X; u; F ) = f(A; a); (B; b)g:
The converse of Theorem 2 is false. That is, there exists a moral code that

satis�es FPE(X; u; F ) = NE(X; u) for all games but does not satisfy all the

axioms of Theorem 2. A simple example of proving this is the following code.

Example 3 (Best Response code)
For all (X; u) 2 �, all i 2 N and all m�i 2 M�i, Fi(X; u;m�i) :=

BRi(X; u;m�i).

Under this code, players are allowed to play any best reply and hence

fair play equilibrium is equivalent to Nash equilibrium. This code, however,

violates e¤ectiveness since a pure-strategy Nash equilibrium may not exist.

If a moral code satis�es all the axioms of Theorem 2, then a fair play

equilibrium exists because Theorem 2 implies that the existence of fair play

equilibrium is reduced to the existence of Nash equilibrium. The same cannot

be said for moral codes that satisfy only the axioms of Theorem 1. As the
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next example shows, if a moral code lacks continuity, fair play equilibria may

not exist.

Example 4 (Local strong Pareto code)
For all (X; u) 2 �, all i 2 N , and all m 2 M , mi 2 Fi(X; u;m�i) if and

only if there exists no m0
i 2 Mi such that vj(m0

i;m�i) � vj(mi;m�i) for all

j 2 N and vj(m0
i;m�i) > vj(mi;m�i) for some j 2 N:

This code satis�es all the axioms except for continuity. Under this code,

a fair play equilibrium does not exist for some game. An example is the

following game.
a b

A 1; 0 2; 0

B 0; 2 2; 1

(16)

The set of fair plays are

F1(X; u;m�1) =

(
fBg if m2(b) = 1

M1 otherwise

F2(X; u;m�2) =

(
fbg if m1(A) = 1

M2 otherwise.

A player can choose any strategy in all but one case: Player 1 is con-

strained to B if player 2 chooses b, and player 2 is constrained to b if player 1

choosesA. This game has no fair play equilibrium. (Proof: If player 2 chooses

b with probability one, player 1 chooses B, but then player 2 is free to choose

anything and thus chooses a, a contradiction. If player 2 does not choose b

with probability one, player 1 is free to choose anything and thus chooses A,

which constrains player 2 to b, which is a contradiction.) On the other hand,

as long as player 1 chooses A, a Nash equilibrium results independently of

player 2�s choice.

Theorem 1 holds true for this code, but it contains the trivial case where

SNE(X; u) � FPE(X; u; F ) = ; � NE(X; u) as is the case for (16). The
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game below shows a case of ; 6= FPE(X; u; F ) ( NE(X; u) for this code.

a b

A 1; 1 0; 1

B 1; 0 0; 0

In this game, (A; a) is a fair play equilibrium and hence FPE(X; u; F ) 6=
;. (A; a) is also a Nash equilibrium, and so is (B; b). However, (B; b) is not
a fair play equilibrium, since it is Pareto dominated by (B; a) and (A; b).

The remaining examples show that none of the axioms in Theorems 1 and

2 is redundant. We show that if any of the axioms is removed, there exists

a moral code that satis�es the remaining axioms but violates the inclusive

relation of Theorem 1 (and hence Theorem 2).

Example 5 (Anonymity: Dictatorial code)
There exists a player k 2 N such that for all (X; u) 2 �, all i 2 N , and

all m�i 2M�i,

Fi(X; u;m�i) := fmi 2Mi : vk(mi;m�i) � vk(m0
i;m�i) for all m0

i 2Mig:

Thus one�s action is fair if and only if it is optimal for the dictator.

This code satis�es all the axioms except for anonymity. For this code, the

conclusion of Theorem 1 (and hence that of Theorem 2) is false. Indeed,

if there exists a unique action pro�le x 2 X that maximizes the dictator�s

payo¤ uk(x), it is a fair play equilibrium under this code but it may not be

a Nash equilibrium.

Example 6 (Weak independence: Global weak Pareto code)
Let WP (X; u) � M denote the set of weakly Pareto e¢ cient strategy

pro�les in the game (X; u). De�ne a moral code F by

Fi(X; u;m�i) := fmi 2Mi : 9m0
�i 2M�is:t:(mi;m

0
�i) 2 WP (X; u)g:
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Thus, for a strategy to be acceptable, it su¢ ces that the strategy yields

a weakly (and globally) Pareto e¢ cient outcome if the strategy is combined

with some (not necessarily actual) strategy pro�le of the other players. This

code satis�es all the axioms except for independence. Independence is vi-

olated since Fi(X; u;m�i) depends on the utility values vj(m0) for strategy

pro�les m0
�i 6= m�i. To see that this code satis�es continuity, consider a

sequence fu�g such that u� ! u and suppose that mi 2 Fi(X; u� ;m�i) for

all �. The de�nition of F implies that, for all �, there exists m�
�i 2M�i such

that (mi;m
�
�i) 2 WP(X; u�). Since M�i is compact, we can let m�

�i ! m0
�i

without loss of generality. Then (mi;m
�
�i) 2 WP(X; u�) for all � implies

(mi;m
0
�i) 2WP(X; u)12, i.e., mi 2 Fi(X; u;m�i), as desired.

To see that Theorem 1 does not hold without weak independence, consider

the following game.

To see that Theorem 1 does not hold without independence, consider the

following game.

a b c d

a 3; 3 0; 4 0; 0 0; 0

b 4; 0 2; 2 0; 0 0; 0

c 0; 0 0; 0 0; 0 1; 5

d 0; 0 0; 0 5; 1 0; 0

Then (a; a) is a fair play equilibrium under this code; b is not a fair play

since it is not a part of any Pareto e¢ cient outcome. Since (a; a) is not a

Nash equilibrium, we have FPE (X; u; F ) 6� NE (X; u). On the other hand,
(b; b) is a strict Nash equilibrium but not a fair play equilibrium, which shows

that SNE (X; u) 6� FPE (X; u; F ).

Example 7 (Monotonicity: Anti-Pareto code)

12If not, then there exists m0 2 M such that vj(m0) > vj(mi;m
0
�i) for all j. Since

m�
�i ! m0

�i and u
� ! u, there exists �0 such that for all � � �0, v�j (m0) > v�j (mi;m

�
�i)

for all j, which is a contradiction since (mi;m
�
�i) 2WP(X;u�).
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The code �rst reverses each player�s preference ordering and then applies

the local weak Pareto code (Example 2). Formally, given (X; u) 2 �, i 2 N ,
m�i 2 M�i, mi 2 Fi(X; u;m�i) if and only if there is no m0

i 2 Mi such that

�vj(m0
i;m�i) > �vj(mi;m�i) for all j 2 N .

This code satis�es all the axioms except for monotonicity. For this code,

the conclusion of Theorem 1 (and hence that of Theorem 2) does not hold.

Indeed, if a game has two action pro�les x; y 2 X such that ui(x) > ui(z) >

ui(y) for all z 2 X n fx; yg and all i, then x is a strict Nash equilibrium but

not a fair play equilibrium, whereas y is a fair play equilibrium but not a

Nash equilibrium.

Example 8 (E¤ectiveness: Altruistic code)
Under this code, a strategy is acceptable if it maximizes someone else�s

utility: given (X; u) 2 �, i 2 N , and m�i 2M�i,

Fi(X; u;m�i) =
[
j 6=i

fmi 2Mi : vj(mi;m�i) � vj(m0
i;m�i) 8m0

i 2Mig:

This code satis�es all the axioms except for e¤ectiveness. To see that

this code lacks e¤ectiveness, it su¢ ces to consider matching pennies. The

following game shows that the conclusion of Theorem 1 (and hence Theorem

2) does not hold for this code.

a b

A 1; 1 2; 0

B 0; 2 1; 1

(A; a) is a strict Nash equilibrium, but not a fair play equilibrium, whereas

(B; b) is a fair play equilibrium, but not a Nash equilibrium.

Example 9 (Welfare nondiscrimination: Aviod-the worst-of-many-for-others-
code)
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Under this code, a strategy is unacceptable socially if it is the unique

minimizer of everyone else�s utility given m�i, provided that the number of

actions is su¢ ciently large. That is, if

X
i2N

1

jXij
� 1; (17)

no restriction is imposed: Fi(X; u;m�i) =Mi for all i and all m�i. If (17) is

violated, which is the case if the number of actions is large for all players, then

for all m 2 M and all i 2 N , mi =2 Fi(X; u;m�i) if and only if (mi;m�i) �j
(m0

i;m�i) for all m0
i 6= mi and all j 6= i.

This code satis�es all the axioms except for welfare nondiscrimination.

To see that e¤ectiveness is satis�ed, suppose
P
i2N
1=jXij < 1 (otherwise, it is

trivial). A key observation is that there exists at most one socially unac-

ceptable action for each player given the other players�actions. Thus, the

maximum number of action pro�les in which at least one player chooses a

socially unacceptable action is
P
i2N

Q
j 6=i
jXjj. Hence, the minimum number of

action pro�les in which all players play fair is

Y
i2N
jXij �

X
i2N

Y
j 6=i

jXjj = (1�
X
i2N
1=jXij)

Y
i2N
jXij > 0:

To see that this moral code violates welfare nondiscrimination, consider

a b c

A 1; 3 0; 0 0; 0

B 3; 1 0; 0 0; 0

a b c

A 1; 3 0; 0 0; 0

B 3; 1 0; 0 0; 0

C 3; 1 0; 0 0; 0

Note that 1=jX1j+ 1=jX2j < 1 for either game. Thus if player 2 plays a,
the moral code states that B is not socially acceptable in the left game since

it gives the unique least preferred outcome for player 2. In the right game,
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however, B is socially acceptable since C is as bad as B for player 2.(On the

other hand, if we remove the requirement of uniqueness from the de�nition of

the moral code, then we lose e¤ectiveness.) The left game also shows that the

conclusion of Theorem 1(and hence that of Theorem 2) does not hold for this

moral code, since FPE(X; u; F ) = f(A; a)g whileNE(X; u) = SNE(X; u) =
f(B; a)g. Since this moral code satis�es neutrality, this example also shows
that Theorem 1 does not hold if welfare nondiscrimination is replaced with

neutrality.

7 The Utilitarian and Lexi�min codes

Independence or the combination of weak independence with invariance to

equivalent utility representations makes the informational base in moral judge-

ment impoverished because these axioms never allow any kind of interper-

sonal welfare comparison.

This section de�nes two moral codes both of which violate independence,

but have rich informational bases that make interpersonal welfare comparison

possible. One is called Local Utilitarian Code, based on the same idea as

that in Utilitarian rule. The other is called Local Lexi-min Code, based on

the same idea as that in Lexi-min rule due to Sen (1970), a lexicographic

completion of Rawls (1972)�di¤erence principle. We show that these codes

work: both codes have fair play equilibria for any game.

De�nition The Local Utilitarian Code is de�ned as follows: Given exoge-

nously speci�ed weights �j; j 2 N; such that �j > 0 for all j and
P
j2N
�j = 1;

Fi(X; u;m�i) := fmi 2 Mi :
P
j2N
�jvj(mi;m�i) �

P
j2N
�jvj(m

0
i;m�i) for all

m0
i 2Mig

Di¤erent weights generate a di¤erent Local Utilitarian code. Every Local

Utilitarian code satis�es all the axioms except anonymity and independence.

If the weights are all equal to 1=n, we call it Local Pure Utilitarian Code,
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which is the only code satisfying anonymity in the family of Local Utilitarian

codes. It is easy to see that every Local Utilitarian code satis�es welfare

nondiscrimination, monotonicity, and continuity.

Proposition 5 For any game (X; u), there exists a fair play equilibrium
under any Local Utilitarian code.

Proof. First we de�ne the following codes, called "-codes.
For any " 2 (0; 1); "-code is de�ned by:
for all (X; u) 2 �, all i 2 N , and all m�i 2M�i,

F "i (X; u;m�i) := fmi 2Mi :
P
j2N
�jvj(mi;m�i) � (1� ")Max(m�i)g;

where Max(m�i) = max
mi2Mi

P
j2N
�jvj(mi;m�i).

Under "-code, a strategymi givenm�i is a fair play if and only if it brings

about at least as much as 1� " portion of the maximum of weighted utility

sum. If there exists a fair play equilibrium m" for any "-code, then there

exists a fair play equilibrium for Local Utilitarian code: As " �! 0; we can

let m" �! m0, the limit of the sequence of fair play equilibria under " code,

which turns out to be a fair play equilibrium for Local Utilitarian code.

Therefore the proof reduces to show the existence of fair play equilibrium

for "-code, which follows Kakutani�s �xed point theorem argument.

Given a game (X; u), we de�ne a correspondence 	 :M !M as follows:

	(m) = �
i2N
fm�

i 2M : m�
i 2 F "i (X; u;m�i) and vi(m�

i ;m�i) � vi(m0
i;m�i)

for all m0
i 2 F "i (X; u;m�i)g.

It is easy to see that 	 is convex valued. To see that 	 is continuous,

the only di¢ cult part to prove is that F "i is lower hemi continuous. (Since it

is easy to see that F "i is upper hemi continuous, F
"
i is then continuous. The

Berge maximum theorem is applied so that 	 is continuous.)

Let m0
i 2 F "i (X; u;m0

�i) and m
�
�i �! m0

�i. It su¢ ces to show the ex-

istence of a sequence such that m�
i 2 F "i (X; u;m�

�i) and m
�
i �! m0

i . By
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de�nition of F "i , X
j2N
�jvj(m

0
i ;m

0
�i) � (1� ")Max(m0

�i):

Let em0
i be a strategy that de�nes Max(m

0
�i), i.e.,X

j2N
�jvj(em0

i ;m
0
�i) > (1� ")Max(m0

�i):

For any �, we have�
1� 1

�

�X
j2N
�jvj(m

0
i ;m

0
�i) +

1

�

X
j2N
�jvj(em0

i ;m
0
�i) > (1� ")Max(m0

�i):

Since Max(m�
�i) �! Max(m0

�i) as m
�
�i �! m0

�i, there exists a number

�� such that

for all � � �� ,�
1� 1

�

�X
j2N
�jvj(m

0
i ;m

�
�i) +

1

�

X
j2N
�jvj(em0

i ;m
�
�i) > (1� ")Max(m�

�i):

That is,

X
j2N
�jvj

��
1� 1

�

�
m0
i +

1

�
em0
i ;m

�
�i

�
> (1� ")Max(m�

�i):

Thus the desired sequence m�
i is given by

m�
i =

�
1� 1

�

�
m0
i +

1

�
em0
i 8� � �� ;

where m�
i is arbitrarily taken when � < �

�.

We now turn to de�ne the Lexi-min code. For every point a 2 Rn, i.e., a
point in the n�dimensional Euclidean space, let i�(a) denote the index of its
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i-th smallest component. Two binary relations >�L and =
�
L on R

n are de�ned

as follows:

a >�L b() 9r 2 N :

(
8i 2 f1; :::; r � 1g : ai�(a) = bi�(b)

ar�(a) > br�(b)
and

a =�L b() 8i 2 N : ai�(a) = bi�(b):

Let a ��L b() a >�L b _ a =�L b:

De�nition The Local Lexi-min Code is de�ned as follows:

Let (X; u) 2 � be given. For any i 2 N; any mi 2 Mi; and any m�i 2
M�i,

Fi(X; u;m�i) := fmi 2Mi : v(mi;m�i) ��L v(m0
i;m�i) for all m0

i 2Mig;
where v(mi;m�i) = (v1(mi;m�i); :::; vn(mi;m�i)).

It is easy to see that this code satis�es anonymity, welfare nondiscrimina-

tion, monotonicity and e¤ectiveness, and that it violates independence and

continuity.

We show the existence of a fair play equilibrium, not depending on the

�xed point argument.

Proposition 6 For the Local Lexi-min code, any fair play pro�le is a fair
play equilibrium, and hence there exists a fair play equilibrium for any game.

Proof. Let x be a fair play pro�le of (X; u). Let i 2 N be given.

Suppose mi 2 Fi(X; u; x�i). By de�nition, we have v(xi; x�i) =�L v(mi; x�i).

Let S be the set of players who are the smallest components of v(xi; x�i),

and similarly let T be the set of players who are the smallest components of

v(mi; x�i). It follows from v(xi; x�i) =
�
L v(mi; x�i) that jSj = jT j. We show

S = T . Suppose not. Then there are subsets S 0 of S and T 0 of T such that

jS 0j = jT 0j and any i 2 S 0 is the smallest in v(xi; x�i) but not in v(mi; x�i)

whereas any i 2 T 0 is the smallest in v(mi; x�i) but not in v(xi; x�i). Thus

for a mixed strategy m0
i of xi and mi, we see that v(m0

i; x�i) >
�
L v(xi; x�i) =

�
L
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v(mi; x�i), which is a contradiction. Thus we have S = T , i.e., the set of

players who are the smallest components of v(xi; x�i) coincides with the set of

players who are the smallest components of v(mi; x�i). This argument can be

applied to the second smallest components, the third smallest components,

..., and the n-th smallest components so that we conclude that i is indi¤erent

between (xi; x�i) and (mi; x�i) and that xi is i�s best reply to x�i in the

situation (X; u; x�i). This holds for all i 2 N , and hence x is a fair play
equilibrium.

8 Conclusion

In economic theory, moral codes have been studied mainly in terms of the

incentives of individuals to follow the moral code. The theory of repeated

games has shown that a society can sustain almost any outcome as an equi-

librium by designing a punishment scheme. Incentive compatibility, however,

is not the only characteristic expected for moral codes. moral codes are also

expected to be fair and consistent in their instructions.

Contrary to our result, real-life moral codes appear to constrain people�s

behavior. People often accept unpleasant tasks because of a moral code or

their own ethical feeling. This is not a contradiction since our result is based

on normative properties of moral codes and does not necessarily characterize

actual moral codes. What our result does is to shed light on a tension between

prescriptivity and universalizability of a moral code and what a moral code

can achieve as equilibrium social outcomes. A dilemma is that if one accepts

our axioms as ethically desirable, the result says that having a moral code

that satis�es them has little merit in terms of the induced outcomes.

The result also shows that a seemingly plausible moral code may violate a

basic normative requirement. If a moral code requires a person to sacri�ce his

own payo¤ to make others better o¤, we know that the moral code violates

at least one of the axioms. The violation may not be easy to detect since
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doing so requires one to consider hypothetical situations. This may give a

useful perspective on real-life moral codes and ethical judgements.

9 Appendix

Lemma 1 For all (X; u) 2 �, all i 2 N , and all mi;m
0
i 2Mi(mi 6= m0

i),if

vj(mi; z�i) = vj(m
0
i; z�i) 8j 2 N; 8z�i 2 X�i (18)

then mi ' m0
i.

Proof. For all m�i 2M�i,

vj(mi;m�i) =
P

z�i2X�i
vj(mi; z�i)

Q
k 6=i
mk(zk)

(18)
=

P
z�i2X�i

vj(m
0
i; z�i)

Q
k 6=i
mk(zk) = vj(m

0
i;m�i),

where zk is the k�th component of z�i. Since this holds true for all j 2 N ,
mi ' m0

i.

Lemma 2 For all (X; u) 2 �, all m 2M , and all a 2 
NnX,
there exists a game (X 0; u0) 2 � satisfying the following conditions:
1. X 0

i = Xi [ faig for all i 2 N;
2. u0jX = u;and
3. ai ' mi for all i 2 N .

Proof. We construct a game (X 0; u0) recursively as follows. First of all, we

de�ne (X1; u1) 2 � by setting X1
1 = X1 [ fa1g; and X1

j = Xj for all j 6= 1;
and

u1j(x1; x�1) =

(
vj(m1; x�1) if x1 = a1
uj(x1; x�1) if x1 6= a1

for all j 2 N and all (x1; x�1) 2 X1. Since u1 di¤ers from u only when

x1 = a1, we have u1jX = u. We have a1 ' m1 in the game (X1; u1). Indeed,
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the de�nition of u1j implies

u1j(a1; x�1) = vj(m1; x�1) = v
1
j (m1; x�1) (19)

since the support of m1 does not include a1. (19) and Lemma 1 imply

a1 ' m1.

Next, we de�ne (X2; u2) 2 � by setting X2
2 = X2 [ fa2g, X2

j = X
1
j for all

j 6= 2, and

u2j(x2; x�2) =

(
v1j (m2; x�2) if x2 = a2
u1j(x2; x�2) if x2 6= a2

for all j 2 N and all (x2; x�2) 2 X2. Since u2 di¤ers from u only when

either x1 = a1 or x2 = a2, we have u2jX = u. As in the previous step,

a2 ' m2 in (X2; u2). We also have a1 ' m1 in (X2; u2). Here is the proof: If

2�s component of x�1 is not a2, then

v2j (m1; x�1) = v
1
j (m1; x�1);

u2j(a1; x�1) = u
1
j(a1; x�1):

These two values are also equal since a1 ' m1 in (X1; u1). On the other

hand, if player 2�s component of x�2 is a2, then

v2j (m1; x�1) = v
2
j (m1; a2; x�f1;2g) = v

1
j (m1;m2; x�f1;2g)

u2j(a1; x�1) = u
2
j(a1; a2; x�f1;2g) = u

1
j(a1;m2; x�f1;2g):

These two values are also equal since a1 ' m1 in (X1; u1). Thus, in both

case, v2j (m1; x�1) = u
2
j(a1; x�1); which implies that a1 ' m1 in (X2; u2).

Repeating the similar argument for each action a3; :::; an, we obtain games

(X3; u3); :::; (Xn; un). The last game (Xn; un) is the desired one.

If a moral code F satis�es welfare nondiscrimination, then for the game

just constructed above, we can say that Fi(X; u;m�i) = Fi(X
0; u0; a�i) n

Mi(ai), where Mi(ai) = fmi 2Mi : mi(ai) > 0g.
To prove the next lemma, we need to consider a framework where only

pure strategies are used. Moral codes in this framework are denoted as X-

codes:

De�nition An X-code is a correspondence G that associates with each
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game (X; u) 2 �, each i 2 N , and each x�i 2 X�i a non-empty subset

Gi(X; u; x�i) � Xi.

Thus, an X-code takes a pure-strategy pro�le of other players and gives

a subset of pure strategies. Our axioms can be rede�ned for X-codes in a

straightforward way.

De�nition (Axioms of X-code)

An X-code G satis�es X-anonymity if for all (X; u); (X 0; u0) 2 � and all
permutations � : N ! N , if for all i 2 N and all x 2 X, X 0

�(i) = Xi and

u0�(i)(x
�) = ui(x), then for all i 2 N and all x 2 X, G�(i)(X 0; u0; x���(i)) =

Gi(X; u; x�i).

An X-code G satis�es X-welfare nondiscrimination if for all (X; u) 2 �,
the following conditions are satis�ed.

(i) For all x; y 2 X, if xi ' yi for all i 2 N (possibly xi = yi for some i),

then for all i 2 N , xi 2 Gi(X; u; x�i)() yi 2 Gi(X; u; y�i);
(ii) For all x 2 X, all i 2 N , and all yi 2 Xi, if xi ' yi and xi 6= yi,

then Gi(Xi n fyig � X�i; u; x�i) = Gi(X; u; x�i) n fyig and Gj(Xi n fyig �
X�i; u; x�j) = Gj(X; u; x�j) for all j 6= i.
An X-code G satis�es X-monotonicity if for all (X; u); (X; u0) 2 �, all

x 2 X, and all i 2 N , if xi 2 Gi(X; u; x�i) and

u0j(x) = uj(x) and u
0
j(y) � uj(y) 8y 6= x; 8j 2 N;

then xi 2 Gi(X; u0; x�i).
An X-code G satis�es X-weak independence if for all (X; u); (X; u0) 2 �,

all i 2 N , and all x�i 2 X�i, if, for all j 2 N , uj and u0j are identical on
f(yi; x�i) : yi 2 Xig, then Gi(X; u; x�i) = Gi(X; u0; x�i).
An X-code G satis�es X-invariance to equivalent utility representations

if for all (X; u); (X; u0) 2 �, if, for all j 2 N , there exist �j > 0 and �j 2 R
such that u0j(x) = �juj(x) + �j for all x 2 X, then for all i 2 N and all

x�i 2 X�i, Gi(X; u0; x�i) = Gi(X; u; x�i).
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An X-code G satis�es X-e¤ectiveness if for all (X; u) 2 �, there exists
x 2 X such that for all i 2 N , xi 2 Gi(X; u; x�i). We call this x an X-fair
play pro�le.

As for moral codes, X-welfare nondiscrimination implies X-neutrality,

which is de�ned as follows: For all (X; u); (X 0; u0) 2 �, if, for all i 2 N ,

there exists a bijection �i : Xi ! X 0
i such that for all x 2 X, u0i(x) =

ui(�1(x1); �2(x2); : : : ; �n(xn)), then for all x 2 X and all i 2 N , xi 2
Gi(X; u; x�i)() �i(xi) 2 Gi(X 0; u0; �(x)�i).

Lemma 3 If an X-code G satis�es X-anonymity, X-welfare nondiscrimi-

nation, X-monotonicity, X-weak independence, X-invariance to equivalent

utility representations, and X-e¤ectiveness, then for all (X; u) 2 �, all i 2 N
and all x�i 2 X�i, Gi(X; u; x�i) \BRi(X; ui; x�i) 6= �

Proof. LetG be aX-code satisfying all the axioms. Suppose on the contrary
that there exist (X; u�) 2 �, i 2 N and x��i 2 X�i such that Gi(X; u�; x��i)\
BRi(X; u

�
i ; x

�
�i) = ;: Let B := BRi(X; u�i ; x��i)\Xi. To simplify notation, let

i = 1, X1 = f1; 2; :::; jX1jg, B = f1; :::; k�1g, where k � 2. LetK = B[fkg.
By X-neutrality, we can assume x��1 = (k; :::; k).

By using X-weak independence and X-welfare nondiscrimination, it is

further assumed to be X = X1 � KN�1. Let us show the details. First we

delete all actions inXj(j 6= 1) except for k and make a game (X1�fkgN�1; u0)
in the following way:

Let u0 be an utility pro�le such that

u0i(x1; x�1) = u
�
i (x1; x

�
�1) 8i 2 N; 8x1 2 X1;8x�1 2 X�1.

It is easy to see that xj ' k for all j 6= 1, all xj 2 Xj. ByX-weak indepen-

dence and X-welfare nondiscrimination, we have Gi(X1 � fkgN�1; u0; x��i) =
Gi(X; u

�; x��i).

Next we add all actions in B to this game, and make a game (X1 �
KN�1; u00) in the following way:

Let u00 be an utility pro�le such that
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u00i (x1; x�1) = u
0
i(x1; x

�
�1)(= u

�
i (x1; x

�
�1)) 8i 2 N;8x1 2 X1;8x�1 2 X�1.

It is easy to see that b ' k for all j 6= 1, all b 2 Kj. By X-weak indepen-

dence and X-welfare nondiscrimination, we have Gi(X1 �KN�1; u00; x��i) =

Gi(X; u
�; x��i).

With out loss of generality we denote u00 = u�.

We now modify u� to de�ne a new pro�le u satisfying the following con-

ditions:

ui(c; x
�
�1) = ui(c

0; x��1) 8c; c0 =2 B; 8i 2 N;
u1(b; x

�
�1) = u

�
1(b; x

�
�1) > u1(c; x

�
�1) � u�1(c; x��1) 8b 2 B; 8c =2 B;

uj(b; x
�
�1) = u

�
j(b; x

�
�1) < uj(c; x

�
�1) � u�j(c; x��1) 8b 2 B; 8c =2 B; 8j 6= 1

Thus we do not change anyone�s utility for action pro�les B� := f(b; x��1) :
b 2 Bg. We increase everyone�s utility over the action pro�les C� :=

f(c; x��1) : c 2 X1nBg so that (i) everyone is indi¤erent within C�, (ii) player
1 prefers B� to C�(which is possible since B� gives strictly higher utilities

than C� under u�1), and (iii) all players j 6= 1 prefer C� to B�. The utilities
at the other action pro�les in X1 �KN�1 are arbitrary.

Suppose that, under the new pro�le u, there exists b1 2 B such that

b1 2 G1(X1 � KN�1; u; x��1). Since u gives higher utilities than the origi-

nal u� over C�, X-monotonicity (together with X-weak independence) im-

plies b1 2 G1(X1 �KN�1; u�; x��1), which is a contradiction. Thus G1(X1 �
KN�1; u; x��1) \B = ;.
We de�ne a pro�le eu such that for all i 2 N ,( eui(c; x�1) = ui(c; x��1) if c =2 B and x�1 6= x��1eui = ui otherwise
ByX-weak independence, G1(X1�KN�1; eu; x��1)\B = G1(X1�KN�1; u; x��1)\

B = ;:
Since all actions inX1nB are welfare equivalent, this implies thatG1(X1�

KN�1; eu; x��1) = X1nB. If we delete all the actions in XinB except for k,

then X-welfare nondiscrimination implies

G1(K
N ; eu; x��1) = fkg:
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Thus, player 1 is instructed to choose k, which is what the other players

want him to do but the worst action for player 1 himself. By X-anonymity

and X-neutrality, everyone is instructed to act in the same way in the same

situation. In what follows, we show that this X-code violates X-e¤ectiveness

by constructing a game where the X-code has no X-fair action pro�le.

For all i 2 N , let ui : X �! R be the utility function obtained from ui

by adding a constant so that ui(k; x��1) = 0. By X-invariance to equivalent

utility representations,

G1(K
N ; u�; x��1) = fkg: (20)

De�ne a function � : N �N �! N by �(i; j) := j � i + 1 (mod n). For
all i 2 N , let �i : f1; :::; n � 1g � K �! R++ and �i > 0. At this point,

the values of �i(�; �) and �i are arbitrary as long as they are strictly positive.
These values are speci�ed at the end of the proof.

We are now ready to construct a game where the X-code has no fair

action pro�le. The action set is K = f1; :::; kg for all players, as before. For
each i, the utility function wi : KN �! R is given by

wi(x) :=
n�1X
j=1

�i(j; xn)u�(j;i)(xj; x
�
�1) + �iu�(n;i)(xn; x

�
�1) if xn < k; (21)

wi(x) :=
n�1X
j=1

�i(j; k)[u�(j;i)(k + 1� xj; x��1)� u�(j;i)(1; x��1)] if xn = k: (22)

We prove that game (KN ; w), where w = (wi)i2N , has no X-fair play

pro�le. The proof goes on with four steps.

Step 1. For any X-fair play pro�le x in (KN ; w), if xn < k, then xj = k

for all j 6= n.
Let x be an X-fair play pro�le such that xn < k. Let j 6= n. (21) implies
wi(�; x�j) =constant+�i(j; xn)u�(j;i)(�; x��1) 8i 2 N;
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where "constant" represents the term that is independent of j�s action xj,

and the dot � represents xj. This equation for i = j implies that player j�s
position in (KN ; w) given x�j is identical to the position of player �(j; j) = 1

in (KN ; u) given x��1. Similarly, player i�s position in (K
N ; w) given x�j is

identical to the position of player �(j; i) in (KN ; u) given x��1. Then our

axioms and (20) imply that Gj(KN ; w; x�j) = fkg; which completes the
proof of Step 1.

Step 2. For any X-fair play pro�le x in (KN ; w), if xi = k for all i 6= n
then xn = k.

Let x be an X-fair play pro�le such that x�n = (k; :::; k). Since (21)-(22)

and ui(k; x��1) = 0 for all i; we have wi(�; x�n) = �iu�(n;i)(�; x��1) for all i 2 N .
This equation for i = n implies that player n�s position in (KN ; w) given x�n
is identical to that of player �(n; n) = 1 in (KN ; u) given x��1. Similarly,

player i0s position in (KN ; w) given x�n is identical to that of player �(n; i)

in (KN ; u) given x��1. HenceGn(K
N ; w; x�n) = G1(K

N ; u; x��1) = fkg, which
completes the proof of Step 2.

Steps 1 and 2 imply that if there exists an X-fair play pro�le x, then

xn = k.

Step 3. For any X-fair play pro�le x in (KN ; w), if xn = k, then xj = 1

for all j 6= n.
Let x be an X-fair play pro�le with xn = k. Let j 6= n be given and

consider the utility vectors he can induce. The de�nition of u implies that

wi(yj; x�j) =constant+�i(j; k)u�(j;i)(k + 1� yj; x��1) 8yj 2 K; 8i 2 N ,
where the �rst term is "constant" with respect to yj. As before, the

equation for i = j implies that the position of player j in (KN ; w) given

x�j is identical to that of player �(j; j) = 1 in (KN ; u) given x��1. Similarly,

the position of player i in (KN ; w) given x�j is identical to that of player

�(j; i) in (KN ; u) given x��1. But this time, action k given x
�
�1 corresponds

to action k + 1� k = 1 given x�j. Thus, the only fair play for player j is 1:
Gj(K

N ; w; x�j) = f1g. This completes the proof of Step 3.
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Therefore, if anX-fair play pro�le exists, it must be (1; :::; 1; k). However,

the next step shows that (1; :::; 1; k) is not an X-fair play pro�le. This con-

cludes our proof that (KN ; w) has no X-fair play pro�le, a desired violation

of X-e¤ectiveness.

Step 4. x = (1; :::; 1; k) is not an X-fair play pro�le in (KN ; w).

It su¢ ces to show that for all a 2 K and all i 2 N ,

wi(1; :::; 1; a) = u�(n;i)(k + 1� a; x��1) + constant: (23)

where the term "constant" is constant with respect to a. Indeed, if this

condition holds, the condition for i = n implies that the position of player

n in (KN ; w) given x�n = (1; :::; 1) is identical to the position of player

�(n; n) = 1 in (KN ; u) given x��1. Similarly, the position of player i in

(KN ; w) given x�n = (1; :::; 1) is identical to that of player �(n; i) in (KN ; u)

given x��1. And player n�s action a = 1 in (KN ; w) given x�n corresponds

to player 1�s action k + 1 � 1 = k in (KN ; u) given x��1. Thus (20) implies

Gn(K
N ; w; x�n) = f1g: This implies that (1; :::; 1; k) is not an X-fair play

pro�le in (KN ; w). The reminder of the proof is devoted to the proof of (23).

A su¢ cient condition for (23) is that for all i 2 N and all xn < k,

wi(1; :::; 1; xn)�wi(1; :::; 1; k) = u�(n;i)(k+1�xn; x��1)�u�(n;i)(1; x��1): (24)

Proof of (24)=)(23): Assume (24) and let a 2 K. It is obvious when
a = k. Suppose a < k. Then substituting xn = a in (24) yields

wi(1; :::; 1; a) = u�(n;i)(k + 1� a; x��1) + constant 8a < k (25)

where

constant = wi(1; :::; 1; k)� u�(n;i)(1; x��1): (26)

But rewriting (26) yields wi(1; :::; 1; k) = u�(n;i)(1; x
�
�1)+constant. This

and (25) imply (23).
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The de�nition of wi implies that (24) is equivalent to the following: for

all i
n�1P
j=1

u�(j;i)(1; x
�
�1)[�i(j; xn) + �i(j; k)] + �iu�(n;i)(xn; x

�
�1)

= u�(n;i)(k + 1� xn; x��1)� u�(n;i)(1; x��1) 8xn < k (27)

This condition may not hold if �i(�; �) and �i(�; �) are chosen arbitrarily.
However, we claim that for all i 2 N , there exists �i : f1; :::; n�1g�K ! R++
and �i > 0 such that (27) holds. This is su¢ cient for our proof since the

argument so far does not depend on the values of �i(�; �) and �i(�; �) as long
as they are strictly positive.

To prove our claim, �x i 2 N . An important observation is that for all
xn < k,

u1(1; x
�
�1) > 0 and u�(n;i)(xn; x

�
�1) < 0 if i 6= n;

u�(1;i)(1; x
�
�1) < 0 and u1(xn; x

�
�1) > 0 if i = n;

which follows from the de�nition of u and the normalization ui(k; x��1) =

0. Thus, for all xn < k, the left-hand side of (27) contains a positive term as

well as a negative term, so it should be intuitively clear that (27) holds for

all xn < k if we choose the weights on those terms appropriately. It should

be noted, however, that �i is independent of xn, while �i(j; xn) can depend

on xn.

The formal proof goes as follows. First consider the case when i 6= n.

Then let �i > 0 be su¢ ciently large so that for all xn < k,

n�1X
j=1

u�(j;i)(1; x
�
�1)+�iu�(n;i)(xn; x

�
�1) < u�(n;i)(k+1�xn; x��1)�u�(n;i)(1; x��1):

(28)

The left-hand side of (28) coincides with that of (27) when �i(j; xn) =

�i(j; k) = 1=2 for all (j; xn) and all (j; k). Since u�(i;i)(1; x��1) > 0, the

equality of (27) can be attained by increasing �i(i; xn).

The case when i = n is similar. First, set �i > 0 su¢ ciently large so
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that for all xn < k, (28) holds with the reverse inequality. This inequality

implies that if we set �i(j; xn) = �i(j; k) = 1=2 for all (j; xn) and all (j; k),

then the left-hand side of (28) is larger than the right-hand side. Since

u�(1;n)(1; x
�
�1) = un(1; x

�
�1) < 0, the equality in (27) can be attained if we

increase �n(1; xn).

To sum up, the last two paragraphs prove that for all i, there exist �i
and �i such that (27) holds for all xn < k, thus (24) holds. As we discussed,

(24) implies Gn(KN ; w; (1; :::; 1)) = f1g, hence (1; :::; 1; k) is not aX-fair play
pro�le.

The next lemma is a weak version of Theorem 1 restricting attention to

the case where other players use pure strategies.

Lemma 4 If a moral code F satis�es anonymity, welfare nondiscrimination,
weak independence, monotonicity, and e¤ectiveness, then for all (X; u) 2 �,
all i 2 N , and all x�i 2 X�i, Fi(X; u; x�i) \BRi(X; u; x�i) 6= �.

Proof. Consider the following particular X-code G.
Gi(X; u; x�i) := [Fi(X; u; x�i)\Xi][[ [

j 6=i
fxi 2 Xi : uj(xi; x�i) � uj(x0i; x�i)

8x0i 2 Xig]:
The second term, i.e., [

j 6=i
f���g, ensures the non-emptyness ofGi(X; u; x�i).

Since F satis�es our original axioms for moral code, G satis�es all the axioms

rede�ned for X-codes.

Hence Lemma 3 implies that for all (X; u) 2 �, all i 2 N , and all x�i 2
X�i,

Gi(X; u; x�i) \BRi(X; ui; x�i) 6= �: (29)

The �nal step is to go back to F and prove that for all (X; u) 2 �, all
i 2 N , and all x�i 2 X�i,

Fi(X; u; x�i) \BRi(X; ui; x�i) 6= �: (30)

If BRi(X; ui; x�i)\Xi = Xi, (30) is obvious because of BRi(X; ui; x�i) =
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Mi. Thus suppose BRi(X; ui; x�i) \Xi ( Xi.

For all j 6= i, let u0j be a utility function obtained from uj by increasing

the utilities at action pro�les (xi; x�i) where xi =2 BRi(X; ui; x�i)\Xi. That

is,

u0j(bi; x�i) = uj(bi; x�i) 8bi 2 BRi(X; ui; x�i) \Xi,

u0j(ci; z�i) = uj(ci; z�i) + L 8ci 2 XinBRi(X; ui; x�i);
where L > 0 is set large so that for all j 6= i,

maxfu0j(xi; x�i) : xi 2 Xig > maxfu0j(bi; x�i) : bi 2 BRi(X; ui; x�i) \Xig:
(31)

Thus, if player i does not play his best reply against x�i, the other players

obtain a large additional payo¤ L. Since the other players want this addi-

tional payo¤, they do not want i to play his best reply. Since (29) holds for

all utility pro�les including (ui; (u0j)j 6=i), we obtain

Gi(X; (ui; (u
0
j)j 6=i); x�i) \BRi(X; ui; x�i) \Xi 6= �:

By de�nition of G, this implies either

Fi(X; (ui; (u
0
j)j 6=i); x�i) \BRi(X; ui; x�i) 6= �: (32)

or

[ [
j 6=i
fxi 2 Xi : u

0
j(xi; x�i) � uj(x0i; x�i) 8x0i 2 Xig] \BRi(X; ui; x�i) 6= �:

(33)

Since u0j was de�ned to satisfy (31), (33) does not hold. Hence we obtain

(32).

Let xi 2 Xi be any element of the intersection in (32). We now go

back to the utility pro�le u. Since the move from (ui; (u
0
j)j 6=i) to u changes

utilities only downwards, but does not change the utilities at (xi; x�i), the

monotonicity of F implies xi 2 Fi(X; u; x�i). Thus we obtain Fi(X; u; x�i)\
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BRi(X; ui; x�i) 6= �:
The proof of Theorems 1 and 2 goes on as follows:

Proof. Theorem 1: Consider any (X; u); i;mi. Take aj 2 
nXj for each

j 6= i to construct a game (X 0; u0) 2 � as in Lemma 2. Lemma 4 says

Fi(X
0; u0; a�i) \ BRi(X 0; u0; a�i) 6= �. This and welfare nondiscrimination

imply Fi(X 0; u0;m�i) \ BRi(X 0; u0;m�i) 6= �. Deleting all aj from (X 0; u0),

and applying welfare nondiscrimination again, we obtain the desired result.

Theorem 2: It su¢ ces to show that BRi(X; u;m�i) � Fi(X; u;m�i). In-

deed, this implies NE(X; u) � FPE(X; u; F ), which together with Theorem
1 completes the proof.

So, let mi 2 BRi(X; u;m�i). Let ai 2 
nXi and de�ne X0
i = Xi [ faig

and X0
j = Xj for all j 6= i. Consider a sequence of utility functions fu�kg1�=1

by

u�k(ai; x�i) := vk(mi; x�i) +
1
�
;

u�k(xi; x�i) := uk(xi; x�i)

for all k 2 N , all xi 2 Xinfaig, and all x�i 2 X�i. Let u0j be the limit of

u�j as � �!1. Then, by Lemma 1, ai ' mi in (X0; u0).

We now show that BRi(X� ; u� ;m�i) = faig for all �. Indeed, for any
m0
i 2Mi (i.e., strategy whose support does not include ai),

v�i (m
0
i;m�i) = vi(m

0
i;m�i) � vi(mi;m�i) < vi(mi;m�i) +

1

�
= v�i (ai;m�i):

(34)

For any m0
i 2 M 0

i (i.e., strategy whose support includes ai) such that

m0
i 6= ai,
v�i (m

0
i;m�i) = m

0
i(ai)v

�
i (ai;m�i) + �

xi 6=ai
m0
i(xi)v

�
i (xi;m�i)

< m0
i(ai)v

�
i (ai;m�i) + �

xi 6=ai
m0
i(xi)v

�
i (ai;m�i) = v

�
i (ai;m�i);

where the inequality follows from (34) and xi 6= ai.
This proves BRi(X� ; u� ;m�i) = faig for all �.
Theorem 1 then implies that ai 2 Fi(X0; u� ;m�i) for all �. The conti-

nuity of F implies ai 2 Fi(X0; u0;m�i). Since ai ' mi in (X0; u0), welfare
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nondiscrimination implies mi 2 Fi(X0; u0;m�i). Deleting ai and applying

welfare nondiscrimination implies mi 2 Fi(X; u;m�i).
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