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A. PRELIMINARIES

We state first a few more or less elementary facts about matrices and
differentiable maps, that are used repeatedly in the sequel.

We recall that R™ is the set of all m-tuples of real numbers. A “point”
or a “vector” of R™ is = (z1, ..., Ty,) ; the number x; is the i-th coordinate
of the vector. Vectors x, y are added coordinatewise

r+y= (21, Tm) + W1, o', Ym) = (T1 + Y1, e, T + Ym)-

If o is a real number, the product az is the vector (auzy, ..., az,,). R™ is
then an m-dimensional real vector space. Its standard basis is the collection
of vectors (e, ...,en) , in which for each i = 1,...;m , e; is the vector of
coordinates e;; = 0;5 , j = 1,...,m , where §;; is the Kronecker function, that
is 6;; = 01if i # j and 1 if ¢ = j. Any vector z = (1, ..., Z,,,) has then a unique
representation as a linear combination of the vectors e; of the standard basis,
that is © = ), x;e;. A norm is a real valued function ||.|| defined on R™, with
|z]] = 0, such that [[az| = |af|lz|l, |z +yll < =] + |lyll, and [lz|| = 0 if
and only if # = 0. The Euclidean norm will be denoted |z| = (>_, #2)'/2,
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A.1. Matrix algebra

A square matriz of dimension m, i.e. a collection of m? real numbers
A = [a;j], where i = 1, ..., m stands for the index of the i-th row of the matrix,
and j = 1, ..., m stands for its j-th column, defines a linear transformation (or
map) T from R™ into itself, that associates to every vector x = (z1, ..., Tp,)
a new vector ' = Tz of coordinates z; = »_; a;;x;, for i = 1,...,m, or in
matrix notation, ' = Az. Then if ey, ..., e, is the standard basis of R™, the
vector represented by the j-th column of A, i.e. @’ = (a;,...,am;), is the
image of e; by T (or A), that is @/ = Te; = Ae;. The image 2/ = Az of
any vector x = (zy,...,T,,) is the linear combination of the vectors a’, with
weights z; :

— A(Zj Tje;) = Zj zjal

Conversely, any linear transformation 7" from R™ into itself can be (uniquely)
represented by the matrix A = [a;;], in the standard basis, where the j-th
column @/ = (ayj, ..., ay;) of the matrix A is the image by T of the vector
e;. It follows from these remarks that a matrix A is invertible if and only if
the corresponding linear transformation 7" is onto (i.e. the image of R™ by
T is R™ itself) or equivalently, if and only if the m vectors o’/ are linearly
independent (i.e. Y. aja’ = 0 implies a; = 0 for all j).
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A given linear transformation 7" of R™ into itself has different equivalent
matrix representations, according to which basis of R™ is chosen. Consider
a new basis of R™, i.e. a collection of m vectors €y, ..., €,,, that are linearly
independent. Let (pij, ..., pmj) be the coordinates of €; in the standard basis,
and P stand for the matrix of which the j-th columns is €;, i.e. P = [p;;]. We
know from the previous paragraph that P has an inverse P~1. A vector of
R™ of which the coordinates in the old (standard) basis are x = (z1, ..., Tp,),
has coordinates y = (y1,...,¥m) in the new basis. That is, this vector can
be (uniquely) expressed as a linear combination of the vectors €; of the new
basis, with weights y;, i.e. >, y;€;. The relationship between new and old
coordinates is obtained from the vector equalities

Zi Tie; = Zj yi€j = Zj yj(zi pijei),

which imply x; = Zj pi;y; for all 4, or in matrix notation, x = Py, y = P~ 'z.

A given linear transformation 7T is represented, in matrix notation, by
the map x — 2’ = Ax in the standard basis, and by y — 3’ = Bz in the new
basis. Analytically, the matrix B is obtained from A by making the change
of variables = Py, which yields B = P~'AP. Here again, the j —th column
of B represents the coordinates, in the new basis, of the image of €; by T.

A linear transformation 7' of R™ into intself may thus be given a conve-
nient matrix representation, by choosing an appropriate basis. The remainder
of this section is devoted to such a matrix representation, the real canonical
(or Jordan) form of T.

We look first at the circumstances ensuring that 7" has a block diagonal
matrix representation. Let E1, ..., E,. be a collection of (linear) subspaces of
R™, i.e. each FEj is a subset of R™ that is closed under the operations of
addition and scalar multiplication : if x, y are vectors of Ej, and « a real
number, then x 4+ y and ax belong also to Ej,. Assume that any vector x
of R™ has a unique representation of the form z = z; + ... + z,, in which
xp, is in Ej, for each h. We say then that R™ is the direct sum of the linear
subspaces. Assume further that each subspace Ej, is invariant by T, i.e. if
x belongs to Ej,, then Tz is also in E}. Choose now a basis for each Ej, and
take the union of the basis elements of the £} to obtain a basis for R™. In
that basis, T" has the block diagonal form

B,
B = dla,g {Bl, ---;Br} =



This means that the matrix By, are put together corner-to-corner diagonally
as indicated, all other entries in B being zero (we adopt the convention that
the blank entries in a matrix are zeros). Each matrix By, represents in fact
the restriction 7} of T' to the invariant suspace E},.

Conversely, assume that R™ has a basis in which T has a matrix repre-
sentation of the above block diagonal form. Let E} be the linear subspace
spanned by the vectors of the basis, the images of which are the columns of
the matrix B associated to the submatrix Bj;. Then Ej is invariant by T,
and R™ is the direct sum of the Fj. To sum up,

Proposition A.1.1. Let T be a linear transformation of R™ into itself.
T has a block diagonal matrixz representation if and only if there exists a
collection of linear subspaces Ej, of R™, h =1,...,r, such that 1) each E}, is
invariant by T, and 2) R™ is the direct sum of the Ej,.

The real canonical matrix representation of 7' is obtained when the in-
variant subspaces Ej are taken to be the “real generalized eigenspaces” of T'
(to be defined shortly), with an appropriate basis.

Distinct eigenvalues

Let A be the matrix representation of 7" in the standard basis. We recall
that an eigenvalue \ of T is a (possibly complex) number such that A = A\
has a nonzero solution &, where ¢ is an m-dimensional vector, the coordinates
of which may be complex numbers. Such a nonzero solution ¢ is called an
eigenvector (of T') corresponding to . The set of (zero and nonzero) solutions
¢ of A& = X is the eigenspace corresponding A, and is noted E(\).

E()\) is a complex vector space, i.e. if &, n are in F()\) and z is a com-
plex number, the £ + 1 and z¢§ are also in E()). If, however, \ is real, the
equation A¢ = ¢ has a nonzero solution z in R™, a real eigenvector. The
real eigenspace F'(X) is then the set of all real solutions of A& = A{. F()\) is
a linear subspace of R™, and E()) is its ”complexification” : every £ in E())
is of the form u + v, where u, v belong to F(\) and i = /—1.

If the eigenvalue is nonreal, i.e. A = a + b with b # 0, then every
eigenvector ¢ corresponding to A must be nonreal, i.e. have the form u + iv
where u, v are vectors of R™ and v # 0. In that case, the complex conjugate
of A, i.e. A = a — ib, is also an eigenvalue, and £ = u + v belongs to E()\)
if and only if its complex conjugate £ = u — iv belongs to F(). This follows
from the fact that A = A\ £ is equivalent, through complex conjugation,

to A& = X £ Consider next the set F()\) of all vectors of R™ that lie in
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E(X\) + E()), i.e. that are of the form & + 7, where £ and 1 belong to E())

and E(\), respectively. If £ = u + iv belongs to E(\) or E()), then u, v are
in F(\), since u = (6 +&)/2 and v = (€ — €)/2i. The set F()\) is a linear
subspace of R™, and one can verify that E(\) + E()), is its complexification.
By a slight abuse of language, we call F'(\) the real eigenspace corresponding

to A (or )), although it does not contain any eigenvector.
It is clear that every eigenspace E(\) or F(\) is invariant by 7.

Eigenvalues are found by solving, in the complex plane, the polynomial
equation

p(A) = Det(A— M) =0

where I is the m-dimensional identity matrix, and p(}) is the determinant of
A — M. The expression p(A) is called the characteristic polynomial of T (or
A). Tts degree is m. T has distinct eigenvalues if the characteristic equation
p(A) = 0 has m distinct roots. The following result shows that 7" has a
particularly simple matrix representation when its eigenvalues are distinct.

Theorem A.1.2. Let T be a linear transformation of R™ into itself, with
distinct eigenvalues. Then every eigenspace E()N) is one-dimensional. Let the
real eigenvalues be A1, ..., A\, and the nonreal eigenvalues be piy, iy, ..., fbs, Fs,
with p, = ap + ibg, by > 0 for all k, and r + 2s = m. Then R™ s the direct
sum of the real eigenspaces F(A1), ..., F(A\.), F(iy), ..., F(u). The dimension
of each F(\p) is one, while the dimension of each F(p,) is two. Fach of
these eigenspaces is tnvariant by T. Moreover, R™ has a basis in which T has
the following block diagonal matrix representation

By -

o )\r . . Qg —bk
B = D, , with Dy, = [ 1

for k=1,..s.

Remark A.1.3. In the theorem, the basis is obtained in the following
manner. The first r elements are real eigenvectors xj in F'(A\,), h = 1, ..., r. For
each k =1,..., s, {vg, ur} is a basis for F'(u,,), where uy +ivy, is an eigenvector



in F(py). The whole basis is actually {x1, ..., ., v1,u, ..., Vs, us }. For details,
see Hirsch and Smale (1974), Chapter 4, Section 2.

Multiple eigenvalues

We look now at the case in which 7" may have multiple eigenvalues. The
charateristic polynomial can always be factorized as

pA) = (A = A" (A — A)™

where the \; are the distinct eigenvalues of T, and n; is the multiplicity of
Ai. One has ny +... +n, = m, and T has multiple eigenvalues if some n; = 2.

In such case, one has to introduce the notions of “generalized” eigen-
vectors and eigenspaces. Let A be an eigenvalue of T', and n its multiplic-
ity. The generalized eigenspace E*()\) corresponding to A is the space of
m-~dimensional complex vectors £ that solve (A — AI)"¢ = 0. If € is in E*())
and £ # 0, then £ is a generalized eigenvector. Of course if n = 1, these
notions reduce to the usual concepts of an eigenspace and an eigenvector.

The arguments employed above to define real eigenvectors or eigenspaces
apply equally well here. If X is real, the space of all vectors in E*(\) that
are real, is the generalized real eigenspace F*(\) corresponding to A. If x is
in F*(\) and z # 0, it is a generalized real eigenvector. If A is nonreal, the
generalized real eigenspace F*(\) (corresponding to A) is the set of all real
vectors of E*(\) + E*()). Here again, there is a slight abuse of language in
such a definition, since there are no real generalized eigenvectors when \ is

nonreal.

One can verify that the dimension of E*(A) is n ; the dimension of F*(\)
is thus n when A is real, 2n otherwise. It is easy to see that E*(\) and F*(\)
are invariant by 7.

Theorem A.1.4. Let T be a linear transformation R™ into itself. Let
A1, -y Ap e its distinct real eigenvalues, with A\, having multiplicity ny, and
My oys ey Pg, g 9LS distinct nonreal eigenvalues, with py, = ay + ibg, by > 0,
having multiplicity ny. Then R™ is the direct sum of the generalized real
eigenspaces F*(A1), ..., F*(N.), F*(14q), .., F*(ug). The dimension of F*(\)
is mp, while the dimension of F*(u;) is 2ng. Each of these eigenspaces is
wnvariant by T.

Moreover, R™ has a basis in which T has the following block diagonal
matrix representation



B:diag{Al,...,Ar,Al,...,As} = A
1

A,

where
1) for each h =1, ...,r, the matriz A, is ny,-dimensional, block diagonal,
every block on the diagonal being of the form

Ah

1 or AL

LM
The number of these blocks is equal to the dimension of the eigenspace E(Myp,).

2) for each k =1, ..., s, the matriz Ay, is 2ng-dimensional, block diagonal,
every block on the diagonal being of the form

Dy,
Iy or Dy,
I, Dk
. —b . . . . .
with Dy, = Zk 4 k and Is the two-dimensional identity matriz.
k k

The number of these blocks is equal to the dimension of the eigenspace E(p;,).

The above block diagonal matrix representation is called the real canon-
ical (or Jordan) form of T. The block diagonal canonical representation is
unique, up to the order of the blocks on the diagonal. Of course, it reduces
to the matrix representation of Theorem A.1.2 in the case of distinct eigen-
values, i.e. when n;, = n; = 1 for all h and k. As an incidental remark, the
above theorem implies that a matrix A is invertible if and only if none of its
eigenvalues is equal to zero.

Remark A.1.5. In the Theorem, the basis is the union of bases for each gen-
eralized real eigenspace F*(A1),..., F*(\.), F*(i1), ..., F*(pg), in that order.
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For F* (1), the basis is of the form {vy, uq, ..., vs, us }, where {u; +ivy, ..., us+
ivs} is a basis for E*(u,,). For details, see Hirsch and Smale (1974, Chapter
6, Section 4, and Appendix III).

A.2. The implicit function theorem

Let G be a map from an open subset W of R™ into R™. We say that
G is C" with r 2 1, if G has continuous partial derivatives of every order
h =1,...,r at each point of W. G is an homeomorphism if it is continuous
and one to one, and if its inverse G~ (a map from G(W) onto W) is also
continuous. G is a C" diffeomorphism if it is C" and one to one, and if its
inverse is also C".

If G is C', the matrix of partial first derivatives at a point x of W is
called the Jacobian matriz of G at x, and is noted DG(z).

The following result gives conditions ensuring that a C" map is locally a
diffeomorphism.

Theorem A.2.1. (Inverse function theorem). Let G be a C" map from an
open set W into R™, with r =2 1. Let x be a point of W and assume that
the Jacobian matriz DG(x) is invertible. Then x has an open neighbourhood
U such that the restriction of G to U is a C" diffeomorphism onto the open
set G(U).

Under the conditions of the theorem, we shall say that G™! : G(U) — U
is a local inverse of G. Application of the inverse function theorem permits
then to see when an implicit equation F'(x,y) = ¢ can be solved and generate,
at least locally, a functional relation of the form y = G(z).

Theorem A.2.2. (Implicit function theorem). Let W be an open set in
R™ x RP, and F a C™ map from W into RP, that is (z,y) — F(x,y) where
x and y are vectors of R™ and RP, respectively. Let (x,,y,) in W be such
that F(z,,Y,) = ¢ and suppose that the Jacobian matriz of the map F(x,,.)
18 invertible at y = y,.

Then there are open set U and V in R™ and RP, respectively, with x, in
U, y, in V and U x V contained in W, and a unique C" map G : U — V,
such that

F(z,G(x)) =c

for all x in U, and moreover, F(x,y) # cif x isin U,y in V and y # G(x).

Notes on the literature



The material of Section A.1 can be found in any textbook on linear al-
gebra. The presentation here is adapted from Hirsch and Smale (1974), see
also Palis and de Melo (1982, chap. 2.2). For a proof of the inverse and the
implicit function theorems, see Hirsch and Smale (1974, Appendix IV).
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B. LINEAR AND NONLINEAR DIFFERENCE EQUATIONS

We shall be concerned in this section, and in the next two ones, with the
qualitative behaviour of the trajectories generated by a difference equation
of the form

(B.1) Tnt1 = G(2)

in which G is a map from an open subset U of R™ into R™. Our first specific
task, which will be carried out presently, is to proceed to such a study in
the immediate vicinity of a fized point of G (also called a stationary state,
an equilibrium point), i.e. an element T of U such that T = G(Z). It will
be seen in particular that if G is continuously differentiable, the trajectories
generated by (B.1) that are close enough to 7, are generally similar to those
that are associated to the “linearized” version

(B.2) Tns1 — T = DG(T) (2 — )

in which DG(Z) stands for the Jacobian matrix of G, evaluated at the fixed
point.

A frequently encountered situation giving rise to a formulation such as
(B.1) is the folowing one. Suppose that the successive states y, of a given
(physical, social) system must satisfy

(B.3) F(Yns1,Yns -y Yn-n) =0

in which each y is a vector of R™, and F' is a C" map from an open set
W of RFVH2) into RP. Let 7 be a stationary state, i.e. a vector of R™ such
that F(7,...,7) = 0, and assume that the Jacobian matrix of the map y —
F(y,...,7), evaluated at 7, is invertible. The Implicit Function Theorem A.2.2
implies that (B.3) can then be solved in y,.; in a neighbourhood of 7. That
is, there exist open sets U in RPN+ and V in R?, containing (7, ...,7) and 3
respectively, and a unique C" map H : U — V such that (Y11, Yns - Yn-nN)
satisfies (B.3), with (y,, ..., yn—n) in U and y,.; in V, if and only if

(B4) Yn+1 = H(yn7 ceey yan)

The resulting “delayed” difference equation can now be cast in the form
(B.1) by considering the variable z,, = (Yn, ..., Yn—n), and the map G that
associates to every such x, in U the vector z,.1 = (Ynt1,---» Yn_N+1), With
Ynt1 given by (B.4). One may note that T = (7, ...,7) is a fixed point of G,
and that the Jacobian matrix of G' at T has the form

11



DGE) =| L 0

I, 0
in which DyH, k = 0, ..., N, stands for the matrix of partial derivatives of
H with respect to the components y,,_, evaluated at (7, ...,7), and I, is the
p-dimensional identity matrix. It is easy to see that DG(Z) is invertible if
and only if Dy H is itself invertible. In that case, by the Inverse Function
Theorem A.2.1, one can choose U small enough to ensure that G is actually

a C" diffeomosphism onto the open set G(U).
B.1. Stability

Consider the difference equation (B.1) in which G maps the open subset
U of R™ into R™. For any x in U, one constructs the trajectory (or the orbit)
of x by using repeatedly (B.1) forn 2 0: z, = z, 1 = G(x), ..., z, = G"(x),
in which G™(x) is the n-th iterate of x and is defined recursively through
G"(z) = G(G"(x)). Of course, it may occur that for some n, G"(z) no
longer belongs to U ; in that case, the orbit leaves the domain of definition
of G and is defined for only finitely many n = 0. If 2 belongs to an invariant
set K, i.e. a subset of U such that G(K) is contained in K, then the orbit
of z is defined for all n = 0. This will be the case for all z, in particular, if
U=Rm

A fixed point T of G is stable if for every open subset V' of U containing
T, there is an open subset V; of V, with T also in Vj, such that for every x
in Vi, the iterates G"(z) are well defined and belong to V' for all n = 0. If in
addition, V' can be chosen so that the distance of G"(x) to T tends to zero
as n — + oo for each = in Vi, then T is asymptotically stable. A fixed point
is unstable if it is not stable.

Remark B.1.1. The foregoing notions of (asymptotic) stability apply not
only to fixed points, but also to any closed set K, without any change.

Remark B.1.2. The analysis of the present section applies immediately to
the study of what happens near a periodic orbit. Suppose that G™(y) = 7
for some 3 in U and n > 1, with G’(y) # 7 for j = 1,...,n — 1. Then 7 is
a pertodic point, of period n, and the corresponding periodic orbit is defined
as 7, G(¥),...,G" (7). The map F = G" is defined at least on a small open
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neighbourhood V' of 3. Stability or unstability of the periodic orbit in the
dynamics generated by G is equivalent to stability of unstability of the fixed
point ¥ in the dynamics generated by F.

B.2. Change of variables

There is nothing intrinsic in the formulation embodied in (B.1). Indeed,
one may always make a change of variables of the form y = h(z), in which y is
a vector of R™ and h an homeomorphism from R™ onto itself. The difference
equation obtained after the change of variable is y,.1 = F(y,), in which
F =hoGoh™!isamap from h(U) into R™ (actually, h need be defined
only on an open set containing both U and G(U)). The two maps F' and G
are then said to be topologically conjugate. If h is a C" diffeomorphism, they
are C" conjugate. Clearly, two difference equations (or two maps) deduced
from each other through conjugation generate the same trajectories (up to
the change of variable) ; they must therefore be viewed as equivalent.

Such an equivalence relation may be only local. Let T be a fixed point of
G, and consider another map y — F(y), with fixed point 3. Then G is locally
topologically (or C™) conjugate fo F if there is an open neighbourhood V' of
T, and an open neighbourhood W of 3, such that the restriction of G to V'
is topologically (or C") conjugate to the restriction of F' to W. In that case,
only the orbits generated by G that are sufficiently near =, are the same, up
to the change of variable, to those of F' that are near 7.

This notion of equivalence between maps or difference equations is im-
portant, since it allows one transforming a given difference equation, which
may be difficult to analyse, and bringing it through an appropriate change
of variables into a more tractable form, where the qualitative features of the
trajectories may be more clearly seen. This equivalence notion leads also,
quite naturally, to the idea of structural stability.

If the equation (B.1) is meant to describe the evolution of some physical
or social phenomenon, one cannot be exactly sure about all the details of the
specification. To get reliable results, one should accordingly work with maps
G that yield a qualitative picture that remains unaltered, up to a change
of variable, when they are slightly perturbated. To be precise, assume that
G:U — R™is C", and let us endow the space of all C" maps F : U — R™
with the so-called C” - topology, i.e. the topology of uniform convergence,
on compacta, of the values of the functions and of its derivatives up to the
order r. The map G is then C" - structural stable if there is a neighbourhood
V of G, in the C" topology, such that all C" perturbations F' of GG that lie in
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V., are conjugate to GG. The qualitative features of the trajectories generated
by a structurally stable map are unchanged after small perturbations.

Here again, structural stability may be required only locally. The C" map
G:U — R™is C" locally structurally stable (near a fixed point T) if there
exists an open neighbourhood V' of T such that the restriction of G to V' is
C" - structurally stable.

The foregoing notion of structural stability involves arbitrary small per-
turbations of the map G under consideration. If particular features of the
phenomenon to be represented impose restrictions (e.g. symmetry) on the
class of maps to be considered, then of course, perturbations and structural
stability should be defined relatively to this particular class of maps.

Remark B.2.1. Difference equations may be defined more generally on man-
ifolds (a subset M of R™ is a C" manifold of dimension m < p, if each element
of M has a neighbourhood V' for which there is a C" diffeomorphism that
maps V onto R™). We shall need only exceptionally to consider explicitly such
a more general formulation. But it may be worth noting at this stage that the
study of the qualitative properties of trajectories near a fixed point in such
a case, may be reduced to the analysis of the text, through an appropriate
change of variable. Specifically, let y,.1 = F(y,) be the difference equation
to be studied, where F' is a map from an open subset of a C" m-dimensional
manifold M into M. If 7 is a fixed point of F, there is a neighbourhood V'
of 7, and a C" diffeomorphism A mapping V' onto R™. If F' is continuous,
there is an open neighbourhood W of § such that both W and F (W) are
subsets of V. Making the change of variable z = h(y), with y in W, shows
that the restriction of F' to W is C" conjugate to the map G : U — R™,
where U = h(W) and G = ho Foh™!.

B.3. Linear difference equations

Linear difference equations of the form

(1) Ln+1 = A.I‘n

in which z is a point of R™ and A is an m-dimensional square matrix, are
important to study on their own right. In addition, as mentioned earlier, the
trajectories associated to a nonlinear difference equation like (B.1) that are
near enough a fixed point T, generally behave qualitatively as those associated
to the linearized version (B.2).
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An obvious fixed point of (B.5) is the origin # = 0, and an important
issue is to determine its stability. The issue is not difficult to analyze, since
the orbit of a point zq of R™ through the repeated action of (B.5) is given
by z, = A"z, in which A" is the n-th power of A, for all n = 0. A™ may
not be easy to compute, however, so we appeal to Theorem A.1.4, to assert
the existence of a linear change of variable x = Py, in which P is invertible,
that transforms (B.5) in

where B = P~! AP is the real canonical form of A. The matrix B is much
easier to work with, since it is block diagonal, i.e. B =diag{By, ..., B,}, in
which each B; is the matrix corresponding to a generalized real eigenspace
F associated to an eigenvalue (and its conjugate if it is nonreal), equiped
with a canonical basis. Since each eigenspace is invariant under the action
of (B.6), one can solve separately each equation &,,, = B;&,, where £ is a
vector in the eigenspace F}*, which leads to &, = BJ'¢,. Complete solutions
of (B.6) are obtained by piecing together the solutions associated to each
eigenspace, and one gets the solution of the original problem by making the

change of variable x = Py.
Distinct eigenvalues

When A has distinct eigenvalues, the form of B was given in Theorem
A.1.2. Restricting attention to the real eigenspace F'(\) corresponding to
the real eigenvalue A leads to the onedimensional difference equation £, ; =
A, or equivalently to the geometric sequence £, = A\"€,, in which the real
number &, is the coordinate of y, in F'(A). Thus if |\| > 1, the sequence [¢,,]
diverges monotonically to 4+o0o for every nonzero initial value &,. If |A| < 1,
the sequence converges to 0, all points going to 0 on first iterate when A =0
(the map & — A is then noninvertible). If A = 1, then all points of F()\)
are fixed points. If A = —1, all points of the eigenspace that differ from 0
are periodic, with period 2. The restriction of (B.6) to F'(\) is orientation
preserving when A > 0, and orientation reversing when A < 0.

Considering on the other hand the real eigenspace F'(u) corresponding to
the nonreal eigenvalue p = a + b, with b > 0, leads to the twodimensional
difference equation

. a —b
£n+1 - Dgna Wlth -D = |: b a :|
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or equivalently ¢, = D", where the twodimensional vector &, represents
the coordinates of ¥, in the canonical basis of F'(u). Setting a = p cos#,
b = psinf with p = |u| # 0 and 0 < # < m, one verifies easily that the
action of D in R? is a rotation of angle § around the origin, followed by an
homothecy, the center of which is the origin, with ratio p, see Fig. B.1. Thus

cosnf —sinnb

D" =p sinnf cosnd

If |p| > 1, the sequence |, | diverges monotonically to +00 whenever £, # 0.
It converges monotonically to 0 when |u| < 1 (the map & — D¢ is then a
contraction). If |u| = 1, D is a rotation of angle 6 around the origin. Thus
lyn| = |yo| for all n, and every circle with center the origin is left invariant
by D. If 6 is of the form 27p/q, where p and ¢ are positive integers that are
relatively prime, every point y # 0 of the plane is periodic, with period ¢,
since then D? y = y. If /27 is irrational, no point of the plane is periodic
; the trajectory generated by 1o # 0 is in fact dense in the circle centered
at the origin of radius |yo|. In all cases, the restriction of (B.6) to the real
eigenspace F'(1) is orientation preserving.

An important remark is in order here. The foregoing contracting (or ex-
panding) properties of the application £ — D¢ are valid when one uses the
Euclidean norm |¢| of R2. These properties do not hold any longer, in gen-
eral, when the application is expressed in another coordinates system, e.g.
through a change of variable z = Q&, where () is an invertible 2-matrix, if one
sticks to the Euclidean norm |z|. Clearly, however, the map * — QDQ 'z
has the same contracting or expanding properties as & — D¢, if one chooses
the norm ||z|| = |Q x| .

Multiple eigenvalues

When A has multiple eigenvalues, the real canonical form B is more com-
plicated, and a little more care is needed. Consider first the case of a multiple
real eigenvalue \. As stated in Theorem A.2.4, the matrix A associated to the
corresponding real generalized eigenspace F*(\) in the real canonical form,
is block diagonal and composed of blocks of the form
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1 A
Consider one of these matrices L, and let p = 2 be its dimension (the case
p = 1 was already analyzed for distinct eigenvalues). Restricting attention to
the subspace spanned by the elements of the canonical basis associated to L,
one is led to study the equation &, = L§,,, or &, = L"¢, for n = 0, where
the p-dimensional vector ¢, represents the coordinates of y,, in (B.6) in the
subspace under consideration.

To compute conveniently L", remark that L = S + N, in which the
diagonal matrix S is A\I, and

1 0
The two matrices S and N commute, i.e. SN = NS, and thus

L = znz (Z) /\n—hNh’

h=0

with the convention N° = I,,. Tt is easily verified that

N2 = 1 .. -l - Npl:[l } and N? = 0.

1 0 O

The components of £, are then given by the formulas

(€ = N0
(€ =&+ () ¥ €oh
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€ =X+ () N e et () X (e

with s = Min(n,p — 1). It follows that |¢,, — 0] when |A| < 1, and that
£, = +00 when &, # 0 and |A| > 1, as n goes to +o00. The convergence
(or divergence) needs not be monotonic here, however. But one may show
that there exists a norm ||¢|| such that the map £ — L¢ is a contraction of
modulus & < 1 when |A\| < 1 (such that the same property is true for the
inverse mapping £ — L7'¢ when |\| > 1). If |\| = 1, the origin is unstable.
One may verify that the restriction of (B.6) to £*()) is orientation preserving
if A\ 2 0, orif A < 0 and the multiplicity of A is even, and that it is orientation
reversing if A < 0 and the multiplicity of A is odd.

The case of a multiple nonreal eigenvalue y = a + ib, b > 0, is handled
by similar methods. According to Theorem A.2.4, the matrix A associated
in the real canonical form to the real generalized eigenspace F*(u), is block
diagonal and composed of blocks of the form

1 D
Consider one of these matrices M and let 2¢g, with ¢ 2 2, be its dimension
(again, the case ¢ = 1 was analysed for distinct eigenvalues). Restricting
attention to the subspace spanned by the elements of the canonical basis
corresponding to M, leads to the study of the equation §, ., = M¢,,, or of

the sequence &, = M"¢,,n = 0, where £, stands for the coordinates of ¥, in
(B.6) in the subspace under consideration.

One has here M = S + N, in which



The form of D"" was given when considering distinct eigenvalues. If a =
pcosf and b = psinf with p = |u| and 0 < 6 < 7, then

pr—h _ neh cos(n—h)0  —sin(n — h)6
N sin(n — h)é cos(n—h)f |-

As for N, it is easily verified that

N?= |7 . " ,---,N‘H:{

I 0 0

The components of £, can then be easily computed from &, = M™¢,, in
much the same was as for real eigenvalues. It will suffice here to remark that
each component of £, is a linear combination of terms of the form

(h) p" " cos(n —h)f (h) p" " sin(n — h)f

n n

with h =0, ..., Min(n, ¢ — 1), the coefficients being determined by the initial
vector &,. Its follows here again that [£,,| — 0 when p = |u| < 1, and
€,,] — +oo when &, # 0 and |u| > 1, as n diverges to +o00. The convergence
or divergence needs not be monotonic. But there exists a norm ||£|| such
that £ — M¢ is a contraction of modulus & < 1 when |u| < 1 (the same
being true of the inverse mapping & — M~ if |u| > 1). If |u| = 1, the
origin is unstable. In all cases, the restriction of (B.6) to F*(u) is orientation
preserving.

This completes the analysis of the solutions of (B.6). One important fea-
ture of the solutions is the following one.

Theorem B.3.1. Every component of vy, = B"yy, n > 0, is a linear combi-
nation of terms of the form

(Z) Pt cos(n — h)f (Z) o sin(n — 1)

where A = p(cosf + i sinf) is an eigenvalue with multiplicity k =2 1, and
h=0,..., Min(n, k — 1) with weights determined by the initial vector yo (real
eigenvalues correspond to 6 = 0,7). The solutions to (B.5), being obtained
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through the linear transformation x, = Py,, have the same qualitative fea-
ture.

The other important finding concerned the stability of the origin in (B.6),
and thus in (B.5). To state the results neatly, it is convenient to introduce
the following notation. Let Ay, ..., A, be the distinct real eigenvalues of A,
and fuq, iy, ..., fg, I, its distinct nonreal eigenvalues. The stable space F*° of
the origin is defined as the space spanned by all the vectors that lie in the
real generalized eigenspaces F*(\,) or F*(u,,) such that |A,| or || < 1. The
unstable space F™ is the space spanned by the eigenspaces F*(\y,) or F*(u;,)
such that |\y| or || > 1. The center space F€ is the space spanned by all
the real generalized eigenspaces corresponding to an eigenvalue of modulus 1.
Each of these spaces F*, F'*, F is of course invariant under (B.5). Moreover

Theorem B.3.2. There exist a norm ||z|| in R™ and two constants 0 < ky <
1 < ky such that every solution z, = A™ x¢ of (B.5) with xo # 0 satisfies

L ||znl| = k2 ||zo|| when zo € F*, for all n = 1.
2. ||zn|| > K ||@o|| when xo € F™, for all n = 1.

3. The sequence x,, does not converge to 0 when xzy € F*°.

If all eigenvalues of A are such that |A| < 1, the origin is a sink ; if [\| < 1
for some eigenvalues and |A| > 1 for the others : a saddle point, and if |A| > 1
for all eigenvalues : a source.

Structural stability

It is clear that the linear map x — Az cannot be structurally stable (even
in the class of linear applications of R™) if one of the eigenvalues (or more)
has modulus one. For the trajectories lying in the center space F'° can then be
removed by a slight perturbation of the matrix A. Nor can it be structurally
stable if one of the eigenvalues (or more) is 0. One may expect, however,
the linear map to be structurally stable if these two ”borderline” cases are
assumed away. This conjecture is confirmed by the following fact.

Theorem B.3.3. Assume that the m-dimensional matriz A has no eigen-
value of modulus equal to 0 or 1. Then the linear map r — Ax is structurally
stable in the class of all linear maps of R™.

B.4. Hyperbolic fixed points
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Let us go back to the nonlinear difference equation

(B.7) Tni1 = G(zy)

where the map G : U — R is C", and consider a fixed point T of G. A
common procedure for studying the solutions of this equation near 7, is to
linearize it and to analyse the solutions of the associated linear difference
equation

(B.8) Yns1 = DG(T)yn

in which DG(Z) is the Jacobian matrix of G at Z. The following fact im-
plies that the procedure is valid, provided that DG(Z) is invertible (has no
zero eigenvalue), and that T is a hyperbolic fixed point, i.e. DG(T) has no
eigenvalue of modulus 1.

Theorem B.4.1. Let G be a C™ map, r = 1, from the open subset U of
R™ into R™. Let T be a hyperbolic fized point such that the Jacobian matrix

DG(Z) is invertible. The G is locally topologically conjugate to the linear map

It follows from the analysis of the previous section that under the condi-
tions of the theorem, the fixed point T is asymptotically stable if all eigen-
values A of DG(T) satisfy |A| < 1, and that it is unstable when one of them
is such that |A\| > 1. As a matter of fact, this conclusion is valid even when
some eigenvalues of DG(T) are 0.

Corollary B.4.2. Let G be a C" map, r = 1, from the open subset U of R™
into R™, and T a hyperbolic fixed point. Then T is asymptotically stable if all

eigenvalues A of DG(T) satisfy |\| < 1, and unstable if |A\| > 1 for some A.

In view of the result concerning the structural stability of linear maps of
the previous section (Theorem B.3.3), one should expect, under the assump-
tions sof Theorem B.4.1, the map G to be locally structurally stable.

Corollary B.4.3. Under the assumptions of Theorem B.4.1, G 1s locally
structurally stable.

B.5. Invariant manifolds

It is convenient, when studying the solutions of a linear difference equation
Tni1 = Ax,, to split the analysis into three parts, by looking separately at
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what happens in each of the three invariant subspaces that were introduced
in Theorem B.3.2 : The stable space F'*, the unstable space F* and the
center space F¢ of the matrix A. It turns out that a similar decomposition
is also possible in the case of a nonlinear difference equation x,13 = G(z,),
at least locally, i.e. near a fixed point Z. The role of the above spaces is then
played by local invariant surfaces that are tangent to the stable, unstable
and center spaces of the Jacobian matrix DG(T), respectively.

To be specific, assume that G : U — R™ is C", r 2 1, and that T
is a fixed point. Given a neighbourhood V' of Z, a local invariant manifold
Wiz is a C" manifold (a continuously differentiable surface) passing through
Z and contained in V, such that + € W), v € V and G(z) € V imply
G(z) € Wiz). A local stable manifold W, is then a local invariant manifold
that is tangent at T to (and has the same dimension as) the stable space F'* of
the Jacobian matrix DG(ZT). Similarly, a local unstable (or center) manifold
Wi, (or W) is a local invariant manifold that is tangent at 7 to (and has
the same dimension as) the unstable (or center) space F* (or F*°) of DG(T).

Theorem B.5.1. Let T be a fixed point of the C™ map G from the open
subset U of R™ into R™ (r 2 1). Then there exists a neighbourhood V' of T
such that

1. There is a unique local stable manifold W(SE) m V. Itis C.

2. If DG(T) is invertible, there is a unique local unstable manifold W&

in 'V (it is actually the local stable manifold of the local inverse G™1).
Itis C".

3. Suppose r 2 2. There is a (generally nonunique) local center manifold
Wa) in V. It is C™ Y, and locally attracting : if © and G™(z) are in V

for all n 2 1, then the distance between G"(x) and W, tends to 0 as
n — +00.

Of course, in the foregoing statement, if the dimension of one of the spaces
F is 0 (if the space reduces to the origin), the corresponding local manifold
vanishes. Fig. B.2 describes local stable and unstable manifolds in the case
of a hyperbolic fixed point in R2.

Motion on the local stable and unstable manifolds
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Since the local stable and unstable manifolds are diffeomorphic, near 7,
to the stable and unstable spaces F** and ™ of the Jacobian matrix DG(Z),
one should expect, by analogy to Theorem B.4.1, the restriction of G to
these manifolds to behave near T like the restriction of the linearized map
x — DG(T) x to F* or F*. Indeed,

Theorem B.5.2. Suppose that G is as in Theorem B.5.1, and that DG(T) is
invertible. Let B*, B* be the submatrices in the real canonical form of DG(T),

that correspond to the stable and unstable spaces F° and F™, respectively.
Then

1. The restriction of G to the local stable (resp. unstable) manifold is
locally topologically conjugate to the linear map v — B®x, x € F?*
(resp. © — Bz, x € F").

2. There is a norm ||z|| of R™, and two constants k® < 1 < k* such that
if 6 >0 s small enough

a. |G(z) — 7|
b. ||G(z) — 7|

S k*|lz = || for all x in W, |z — || <6.
Z k" [lz == for all z in Wi, [z — || <.

z)’

Motion on a local center manifold

Part 3 of Theorem B.5.1 shows that any recurrent behaviour (e.g. cy-
cles) near the fixed point, must occur in a local center manifold. An explicit
representation of such a manifold, that takes into account possible nonlinear-
ities, is therefore useful. It may be obtained through the following procedure
(the reader will verify easily that the procedure applies to local stable and
unstable manifolds as well).

To simplify notation, assume that the fixed point has been translated to
the origin, i.e. T = 0, and that a linear change of variables has brought the
Jacobian matrix DG(7T) in its real canonical form, which we write diag{C, B},
in which C' corresponds to the center space F°, and B to the direct sum
of the stable and unstable spaces F* and F". In terms of the notation of
Theorem B.5.2, B = diag{B*, B“}. In the new coordinate system (§,7),
where £ belongs to F° and 1 to F'*+ F", the difference equation x,, .1 = G(z,)
reads

(Bg) gn—&-l = Cé—n + f(én? T]n)

23



nn—|—1 = Bnn + g(gm nn)

in which f and g are defined on an appropriate neighbourhood of the origin.
By construction, the functions f and g are C", r = 2 and are equal to 0, as
well as their first partial derivatives, at £ =0, n = 0.

Since a local center manifold W, is tangent at the origin to F* (the
n = 0 space), one can represent it as the graph of a C"~! function n = y(§),
that is defined on a (small enough) open ball V' in F*¢, centered at & = 0,
such that v and its first partial derivatives vanish at £ = 0, see Fig. B.3.
The function v, near the origin, is given implicitly by expressing that W(%)
is locally invariant, that is

(B.10) By(&) + g(&,7(§)) = v[CE + f(&,7(8))]

whenever £ and C¢+ f(€,v(€)) are in V' (which will be surely true if £ is small
enough). Given such a function =, the restriction of the difference equation
to the local center manifold is obtained by setting n,, = v(§,,) and n,,, =
Y(&,41) in (B.9). Clearly, one obtains an equivalent difference equation by
projecting it on F°, i.e. by considering only the equation corresponding to
the component &

(B.11) §ni1 = C& + [(6,7(60)) =T(E,), 6, € V.

Trajectories in the local center manifold may then be analyzed by using this
“reduced difference equation” in F¢, near £ = 0.

Equivalent local dynamics

Up to now, we confined ourselves to the trajectories that lie in the local
stable, center and unstable manifolds. The following fact shows that these
trajectories contain all the information that is necessary to reconstruct the
dynamics generated by G in R™, near the fixed point : as for the linear
case, trajectories in R™ may be considered as the “Cartesian product” of
trajectories lying in each invariant manifold. Since the motion on the local
stable and unstable manifolds is locally conjugate to the linear equation
n — Bn, with n in F** + F", this result can be formulated as
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Theorem B.5.3. Let G be as in Theorem B.5.1, and assume that DG(T) is
invertible. Then G s locally topologically conjugate to the application defined
by

n — Bn, n € F*+ F" where B = diag{ B*, B*}

§ = CE+ f(§7(8) =T(8), € € F* small.

Of course, if the Jacobian matrix DG(Z) has no eigenvalue of modulus 1,
the foregoing result reduces to Theorem B.4.1.

Remark B.5.4. One cannot get, in general, an exact analytical expression
of a solution v of (B.10), but one can approximate it by a Taylor series at
¢ = 0. Suppose that a C* function T from F° into F'* + F* has been found
such that, first, T" and its first partial derivatives vanish at £ = 0, and second

TICE+ f(&,T(8)] — BT(§) — 9(&, T(8)) = 0(I¢]")

as & — 0, for some 1 < p < r. Then y(§) = T(§) + 0(Jz|") as & — 0, see
Car (1981, Section 2.8). Here the notation 0(|£|") stands for a function «(§)
such that there is a constant k with |«a(£)] < k|¢[P for £ small enough. In
practice, T'(§) is chosen as a Taylor series of 7. Specifically, one expands -,
up to the desired order, as well as f and g, as a Taylor series at £ = 0 in
(B.10), and one gets the unknown coefficients of the Taylor expansion of -y
by identification of the two members. This shows in particular that although
the function « defining a local center manifold need not be unique, its partial
derivatives a £ = 0 are nevertheless uniquely determined. Finally, replacing
7 by its Taylor approximation 7" in (B.11) yields an approximate analytical
expression of the reduced difference equation in the local center manifold.

Of course, the principle of such a Taylor approximation applies equally
well to local stable and unstable manifolds.

Notes on the literature

The treatment of linear difference equations in section B.3 is a transposi-
tion of Hirsch and Smale (1974, chap. 6), who deal with differential equations.
The material on hyperbolic fixed points of section B.4 can be found in any
book on dynamical systems, see e.g. Hartman (1964), Palis and de Melo
(1982, chap. 2.4), Guckenheimer and Holmes (1983, chap. 1.4). Section B.5
on invariant manifolds is adapted from Lanford (1983), Iooss (1979, chap.
V), Carr (1981, section 2.8), Guckenheimer and Holmes (1983, chap. 1.4 and
3.2), Palis and de Melo (1982, chap. 2.6). Theorem B.5.3 follows from Palis
and Takens (1977) : the analogue result for differential equations (vector
fields) is stated there p. 341 (see also Guckenheimer and Holmes (1983, p.
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130)), and the result for diffeomorphisms follows by a suspending technique,
as p. 340 (I owe this reference to A. Chenciner).
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C. LOCAL BIFURCATIONS

As we have seen in Section B.3, linear difference equations can produce
cyclical trajectories when some eigenvalues have modulus 1, but such cycles
are removed by a small change of the matrix defining the system. By contrast,
nonlinear maps may generate cyclical behaviour that is preserved under small
perturbations, i.e. that is structurally stable. A most powerful tool to analyse
the occurrence of cyclical fluctuations, in many cases the only one presently
available, is provided by the theory of bifurcations.

C.1. Introduction

Consider a family of difference equations indexed by a real parameter «,
say Tny1 = Go(xy,), where each G, is a map from an open set U of R™ into
R™, « is in an open interval I containing 0, and where the dependence on
(a,z) is C", r 2 1. In many cases, one requires also that G,(0) = 0, for
all admissible « : this simply means that there is a family of fixed points
that have been translated to the origin, see Remark C.1.1. The family G,
undergoes a bifurcation, say at a = 0, if the qualitative features of the orbits
of GG, change when o moves from negative to positive values. The bifurcation
is local (at the origin) if the change of the orbit structure can be observed
in an arbitrarily small (but independent of ) neighbourhood of z = 0 ; the
bifurcation is global otherwise. We focus here on local bifurcations. A brief
introduction to global bifurcations, which are far more difficult to understand,
will be given in Appendix D.

If a local bifurcation occurs, then in view of Theorem B.4.2, there must
be an eigenvalue A, of the Jacobian matrix DG, (0) that either goes through
0 (Ao = 0), or crosses the unit circle in the complex plane (|A\,| = 1), at
a = 0. The case A\, = 0 is uninteresting, however, since it may change locally
a map that is orientation reversing to an orientation preserving one, but it
cannot generate cycles near the origin (think of the one dimensional difference
equation z,1 = az, + 0(|z2]) for o, x small). We shall assume accordingly
that the Jacobian matrix DG,(0) is invertible for each admissible a, and
focus on the case where only one eigenvalue A, (and of course its conjugate
Ao when it is nonreal) having multiplicity one, crosses the umit circle at
a = 0 : this is called a codimension one local bifurcation . There are thus
three cases: if \g = +1, one gets a saddle node (or fold) bifurcation ; if
Ao = —1, a flip bifurcation, and if )y is nonreal, a Hopf bifurcation.

It turns out that although the dimension of the ambient space R™ may be
large, all the recurrent behaviour associated with a local bifurcation occurs
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necessarily in an invariant surface (manifold) that has a dimension equal to
the number of eigenvalues that cross simultaneously the unit circle at o = 0.
The principle of such a drastic reduction of the dimension of the problem
will be shown to be a consequence of the theory of local center manifolds
in section C.5. This remarkable result enables us to study the saddle node
and the flip bifurcations directly for difference equations on a onedimensional
curve, or equivalently on the real line. On the other hand, a Hopf bifurcation
may be analysed directly in R?, since then the (nonreal) eigenvalue )\, and
its conjugate A\, have modulus 1 at the point of bifurcation a = 0.

Remark C.1.1. We describe now a frequently encountered situation, and
show how it can generate the formulation described in the text. Assume, as in
the introduction of section B, that the successive states y of a given physical
or social system must satisfy

(Cl) F(yn-l—hynv "'7yn—N7a) =0

where y is a vector of RP, o is a real number indexing some characteristics of
the system, and F is a C” map from an open set of RFVF2+1 into RP. Let 7
be a stationary state for a = 0, i.e. a vector of R? such that F'(7,...;5,0) = 0,
and assume that the Jacobian matrix of the map y — F(y,7,...,7,0) is in-
vertible at y = 7. From the Implicit Function Theorem, there are open neigh-
bourhoods V' of (7, ..., 0) in RRVFDFL W of 4 in RP, and a unique C" map
H :V — W such that (y,11, ..., Yn—n, ) satisfies (C.1), with (Y, ..., Yn—n, @)
in V and vy, in W, if and only if

(02) Ynt+1 = H(ynJ"'7yn—N7a)'

To get the formulation of the text, one considers the variable z,, = (Y, ..., Yn—n),
and the map G that associates to every (z,,«) in V the vector z,1 =
(Ynt1s Yns --s Yn—n+1) With y given by (C.2). One may restrict V' to be the
product of an open neighbourhood U of (7, ...,7) in RPN+ and of an open
interval I containing 0 in R. Then G(z,«) is defined on U x I ; in other
words, each map G, = G(.,a) is well defined for each admissible «, on the
open set U, which is independent of the parameter a.

We remark that T = (7, ..., 7) is a fixed point for « = 0, i.e. G(Z,0) -7 =
0. This fixed point may of course be translated to the origin through a linear
change of variable. In fact, as noted in the text, one often requires that
G(0,a) = G,(0) = 0 for all admissible . We describe now a procedure that
leads to such a formulation.
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Assume that the Jacobian matrix D, G(Z,0) has no eigenvalue equal to
1. Then, again from the Implicit Function Theorem, the fixed point is bound
to persist for small values of a. That is, the equation

(C.3) r—G(z,a) =0

can be solved uniquely in z near (7,0). Specifically, there are open neigh-
bourhoods of & = 0 in R and of 7 in RPN+ —which we may take, since
we are interested in local bifurcations, to be I and U respectively— and a
C™ map from [ to U, i.e. o — T,, such that (C.3) is satisfied on U x I if
and only if © = T,. Translating T, to the origin of RP(N*D is achieved by
making the change of variable z = x —Z,, for each admissible «, which yields
the equivalent family G*(z,a) = G(z + Ta, @) — To. One has then indeed
G*(0,«) = 0 for all . By continuity of the map o — Z,, we are sure that
each map G*a = G*(., ) is well defined on a small open ball U* centered at
0 in RPFVFD for |a| < 8, if & is small enough. Restricting attention to the
family G* : U* — RPNV |a| < §, yields the desired formulation.

Remark C.1.2. It should be emphasised that the results of this section
apply also to the study of the local bifurcations of a family of difference
equations, near a periodic orbit. Consider a family of difference equations in
R™ given by the maps F,,, each being defined on a given open set, and suppose
that the origin = = 0 is a fixed point of the n-th iterate of F,, i.e. F2(0) =0
for some n > 1, with F7(0) # 0 for j = 1,...,n— 1, for all admissible . Then
x = 0 is a periodic point, with period n, the corresponding periodic orbit
being 0, F,(0), F2(0), ..., F*~1(0), for each « (again this simply means that
there is a family of periodic orbits, and that one of the periodic points on the
orbits has been translated to the origin). All the results of this section can
then be transposed to the case at hand by considering the family G, = F.

C.2. The saddle node bifurcation

We look first at the case of a one-parameter family of difference equations
on the real line

Tni1 = Gz, @) = Go(zy)

defined by the C" map G : U x I — R, where U and I are open intervals
of the real line containing 0. In that case, for each value of the parameter «,
the trajectories generated by the map G, are easily visualised with the help
of its graph, in the plane (z,,z,1), as shown in Fig. C.1. A fixed point T
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is then described as a point of intersection of the graph of G, with the 45°
line, and the trajectory associated with an initial condition xy is generated
by following the arrows as in the Figure. A fixed point T of G, is then

> 1.

< 1, unstable if

asymptotically stable if a—G(E, ) (7, )

ox

oz

Assume that the origin is a fixed point for & = 0, i.e. G(0,0) = 0, and
that 8—G(O, 0) = +1. A saddle node bifurcation will obtain if we suppose the

Ox
44 b)) Ll G 82G .
generic” conditions %(0, 0) # 0 and w((),()) # 0 (we need accordingly
r=2).

Fig. C.2.a pictures what happens to the graphs of the maps G, for a and
2

x small, in the case where 8—G(O,O) > 0 and a—(0,0) >0.If o <0, G,
Ja 0z?

has two fixed points near 0. The one on the left is asymptotically stable, the
other is unstable. For o = 0, the origin is stable from the left, unstable from
the right. If « > 0, G, has no fixed point near 0. Thus in a saddle node
bifurcation, two fixed points having opposite stability properties coalesce to
the origin, and disappear. Fig. C.2.b, which represents the qualitative features
of this bifurcation for a and x small, is called a bifurcation diagram. The
curve on the left describes the two branches of fixed points. Arrows show
where the discrete orbits generated by G, go, for a given a.

Proposition C.2.1. (Saddle node bifurcation). Let G : U x I — R define
a one-parameter family of maps, where G is C" with v = 2, and U, I are
open intervals of the real line containing 0. Assume (1) G(0,0) =0 ; (2)
a—G(O 0)=1;(3) 82—G(O 0)>0; (4) 8—G(O 0) > 0. Then there are a; <
804 ) — ’ 81'2 ) ’ 804 ) . 1
0 < ag and € > 0 such that

(i) If a1 < a <0, then G, = G(., ) has two fized points x1, < 0 < T,
n (—e,e). The fixed point x1, is asymptotically stable, the other is unstable.

(i1) If 0 < o < g, then G has no fized point in (—¢,¢).
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It can be shown further that the curve on Fig. C.2.b describing the two
branches of fixed points, i.e. the union of the sets {14, 2.} for a3 < a =0,
is indeed a C"~! onedimensional manifold that is tangent to the vertical axis
at =0, a=0.

oG
Of course, the case 8_(0’ 0) < 0 is identical to the above after the change
Q

of parameter o — —a. The reader will easily figure out what is the bifur-
cation diagram when inequality (3) is reversed : it amounts to changing the

roles of positive and negative values of «, and reversing the arrows in Fig.
C.2.b.

Transcritical bifurcation

The foregoing bifurcation described the “generic” situation. In some cases,
however, the class of maps under consideration may be restricted, and a dif-
ferent bifurcation may occur. A common restriction is that the fixed point
should persist, or equivalently, after a suitable a-dependent change of vari-
ables that translates the fixed point to the origin, that 0 should be a fixed
point for all values of the parameter. In that case, one obtains a transcritical
bifurcation.

Consider a family of maps defined by G(z, ) as above, with aa—G(O, 0) =
x

+1. We require here that G(0,a) = 0 for all «, and not only for « = 0
0
(this implies —(0,0) = 0, a violation of condition (4) of Proposition C.2.1),

O
2
but keep the “generic” assumption W(O, 0) # 0. In order to get actually a
x
bifurcation, we must specify that 8_(0’ a) goes through +1 when a passes
x

2

. 0°G
0, that is m(o, 0) ?é 0.

Fig. C.3.a describes what happens to the graphs of GG, near 0 for o small,
2 2

when g—(j((),()) > 0 and %(0,0) > 0. If a < 0, the origin is asymptoti-
cally stable, but there is another fixed point x1, > 0 near 0, which is unstable.
If a > 0, the origin is unstable, and there exists another fixed point z1, < 0
near 0, which is asymptotically stable. Thus in a transcritical bifurcation,
there are two fixed points that exchange stability at the point of bifurcation.
The corresponding bifurcation diagram is given in Fig. C.3.b.

31



Fg b R

/\ {4+




Proposition C.2.2. (Transcritical bifurcation). Let G : U x I — R define
a one-parameter family of maps, where G is C" with v = 2, and U, I are
open intervals of the real line containing 0. Assume

2
a?él) G(0,0) = 0 for all a g—fm,m — 1) 2762:(0,0) =0 ()
ERC (0,0) > 0. Then there are a; <0 < ag and € > 0 such that

(i) If an < a <0, G, has two fized points, 0 and x1, > 0 in (—¢,e). The
origin is asymptotically stable, the other fixed point is unstable.

(i) If 0 < o < g, Gy has two fized points, 0 and x1, < 0 in (—¢,¢).
The origin is unstable, the other fired point is asymptotically stable.

It can be shown furthermore that each branch of fixed points in Fig.

C.3.b, i.e. the union of all fixed points x, for a; < a <0, or for 0 < a < ag,
2

is a C"! onedimensional manifold. Here again, the case =———(0,0) < 0 is
handled by making the change of parameter &« — —a. The reader will also
figure out easily the bifurcation diagram when the inequality (4) is reversed:
it amounts, here also, to changing the roles of positive and negative values
of a, and reversing the arrows in Fig. C.3.b.

Pitchfork bifurcation
2

Another interesting, “nongeneric” case arises when one assumes Erel (0,0)
x
0 in the foregoing proposition. Let G be C® and suppose that the third deriv-
3

ative, i.e. (0,0), differs from 0. One gets then a pitchfork bifurcation.

O’

Fig. C.4.a describes what happens to the graphs of GG, near the origin for
3

a small, when a—Cj(O, 0) < 0. For a = 0, the graph has an inflexion point at
x = 0, and the origin is asymptotically stable. If a < 0, G, has a unique fixed
point, at x = 0, near the origin, and it is asymptotically stable. If o > 0,
G, has three fixed points near 0. The origin is an unstable fixed point, but
the two others are asymptotically stable. One says then that the family G,
undergoes a supercritical pitchfork bifurcation : the fixed point x = 0 loses
its stability as a goes through 0, to give rise to a pair of stable fixed points.
The corresponding bifurcation diagram is described in Fig. C.4.b.

Proposition C.2.3. (Supercritical pitchfork bifurcation). Let G : U x I —
0*G
R be as in Proposition C.2.2, except that G is C" with r = 3, W(O’ 0)=0
x
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3

and aa—cj((), 0) < 0. Then there are a; <0 < ag and € > 0 such that
T

(i) If an < a £0, then G, has a unique fixed point, x = 0, in (—¢,¢). It
15 asymptotically stable.

(i) If 0 < o < «g, then G has three fized points in (—e,e). The origin
is an unstable fized point, the two others, r1, < 0 < Toq, are asymptotically
stable.

Here again, the two branches of fixed points in Fig. C.4.b, i.e. the union
of the sets {Z14, T25} for 0 £ a < ag, is a C"~! onedimensional manifold that

2
5 804(0’ 0) < 0 is identical

to the above after the change of parameter & — —a. A more interesting
3

modification arises when considering the case —(0,0) > 0, which yields

is tangent to z-axis at * = 0, & = 0. The case

a socalled subcritical pitchfork bifurcation. What happens qualitatively is
described in Fig. C.5.a, and the corresponding bifurcation diagram is given
in Fig. C.5.b. At the bifurcation point o = 0, the graph of GG, has an inflexion
point at x = 0 as before, but the origin is now unstable (whereas it was stable
for a = 0 in the case of a supercritical bifurcation). Then for o < 0, there are
three fixed points near the origin, but only x = 0 is asymptotically stable.
For a = 0, the origin is the unique fixed point near x = 0, and it is unstable.

Remark C.2.4. The reader will easily verify that if the family G, under-
goes a subcritical pitchfork bifurcation when a goes through 0 from below,
then the family of its local inverses G;! undergoes a supercritical bifurcation
when « goes through 0 from above. The family of local inverses is defined as

follows. Since 8—(0’ 0) # 0, from the implicit Function Theorem, the equa-
x

tion G(x, ) —y = 0 can be solved uniquely in z for z, a, y small, to yield
x = F(y,«) where F' may assumed to be defined on V' x J, with V| J being
two open intervals containing 0. Then for every «in J, F,, = F(., &) is indeed
a local inverse of G, = G(., ), and the family F,, undergoes a supercritical
pitchfork bifurcation when o goes through 0 from above.

Remark C.2.5. It is clear that the qualitative features of the local bi-
furcations discussed here are preserved if one makes a change of parameter
a — p(a) and an a-dependent change of variable x — h(z, ), where ¢ and
h(., &) are homeomorphisms. It can be shown that the converse result holds.
For instance, two bifurcating families satisfying the assumptions of Proposi-
tion C.2.1 are locally topologically conjugate : they are the same, up to a
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change of parameter and a change of variable as above, at least suffiiently
near « = 0, x = 0. Similar statements hold for transcritical or pitchfork
bifurcations.

Finally, it should be noted that the bifurcations presented here are (lo-
cally) structurally stable, i.e. the qualitative features of the bifurcation are
preserved, up to a change of variable, if the maps in the family are slightly
perturbated (in a way that depends sufficiently smoothly on the parameter).
By contrast, as noted earlier, such structural stability could not obtain, had
we assumed the maps in the family to be linear.

C.3. The flip bifurcation

The previous section was devoted to the case where the one-parameter

0
family of maps of the real line defined by G(z, o), was such that %(O, 0)=1.

oG
We investigate now the case where a—(O, 0) = —1. To be specific, let the

x
family be defined by the map G : U x I — R as before, where G is C? (the
need for continuous third derivatives will become apparent soon). Assume

2
G(0,a) = 0 for all «, 2—3(0,0) = —1 and 0 C;(O,O) < 0.2 The origin

x = 0 is a fixed point of every GG, and the slope of the graph of G, at the
origin, decreases and passes through —1 as a goes through 0 from below. The
family G, undergoes then a flip bifurcation.

The orbits of G, near the origin oscillate more and more around the
fixed point x = 0, when « varies from negative to positive values. If all the
maps in the family G, were linear, then these oscillating trajectories would
converge to 0 for a < 0, and diverge to infinity for o > 0, while every = # 0
would be a periodic point of period two for a = 0, since one would have then
Go(z) = —z for all z. One should thus expect a cycle of period two to be
part of the story in the more general case of nonlinear maps, as considered
here.

The most efficient way to discover an orbit of period two of G, is to look
at its second iterate, G = G, 0 G,, which is well defined near x = 0. Indeed,
a cycle of period two for G, is characterized by a fixed point of G2 that
differs from O.

Let us write G2 () as G*(z, ). Since

G*(z,a) = G(G(z, a), a)
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one has clearly G*(0,«) = 0 for all o, and one gets from the chain rule of
differentiation

0G? 0°G G2
—(0.0) =41 5=5(0,0)> 0 —=-(0,0) =0.

ox Ox?
32
53 (0,0) # 0, we see that the fam-
32
ily G undergoes a pitchfork bifurcation at o = 0.3 If aaG

If we suppose the “generic” condition

—(0,0) < 0, the
X

bifurcation is supercritical, and what happens to the family G? is qualita-
tively depicted in Fig. C.4. For a < 0, there is no cycle of period two near
x = 0, and the origin is a stable fixed point. When a > 0, the origin becomes
unstable, there is an orbit of period two near x = 0, and this orbit is asymp-
totically stable (since a cycle of period two is characterized by a fixed point

7 of G2, asymptotic stability is defined byusing G2, and is thus guaranteed
2

when ‘ G, (7)

ox

fixed point becomes unstable, and gives rise to a stable orbit of period 2.
For this reason, the flip bifurcation is sometimes called a period doubling (or
subharmonic) bifurcation.

< 1). Therefore, in a supercritical flip bifurcation, a stable

The corresponding bifurcation diagram for the family G, itself is repre-
sented in Fig. C.6. The curve there describes the evolution of the two points
on the orbit of period 2 when the parameter a varies. In Fig. C.7.a and b,
the graphs of G, are represented, as well as the trajectories they generate
near the origin, for @ < 0 and « > 0 respectively.

The analogue of Proposition C.2.3 becomes here :

Proposition C.3.1. (Supercritical flip bifurcation). Let G : U x I — R
define a one-parameter family of maps, where G is C", with r =2 3, and U,
I are open intervals containing 0. Assume

(1) G(0,) = 0 for all a5 (2) g—f((),()) =—1;
0*G PG?
(3) 8x8a<0’0) <0; (4 53 (0,0) < 0.

Then, there are a; <0 < an and € > 0 such that
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(i) If a1 < o £0, the G, has a unique fixed point at the origin, and no
orbit of period two in (—e,e). The fized point is asymptotically stable.

(i) If 0 < a < g, then G, has a unique fixed point at the origin, and
a unique orbit of period two in (—e,e). The fived point is unstable, and the
orbit of period two is asymptotically stable.

In the same way as for the pitchfork bifurcation, the union of the period

two points for 0 < o < ay in Fig. C.6, is a C"~! onedimensional manifold
32

—i(o,o) > 0, the
x

bifurcation is subcritical, and what happens to the family G? is qualitatively
described in Fig. C.5. The basic difference with the supercritical case is that
the origin z = 0 is now unstable when o = 0, while it was stable in the case
of supercritical bifurcation. Thus in a subcritical flip bifurcation, an unstable
orbit of period two coalesces with a stable fixed point at a = 0, to leave an
unstable fixed point. The corresponding bifurcation diagram for the family
G, is given in Fig. C.8. Here again, the two branches of the curve represent
the evolution of the two points of the orbit of period two. What happens to
the graphs of the family GG, and to the trajectories they generate near the
fixed point x = 0 is described in Fig. C.9.a and b, for o < 0 and o > 0.

Proposition C.3.2 (Subcritical flip bifurcation). Replace the inequality (4)
312

ox3

that is tangent to the z-axis at + = 0, @ = 0. When

in Proposition C.3.1 by (0,0) > 0. Then there exist oy < 0 < ag and

e > 0 such that
(i) If a1 < o <0, then G, has a unique fized point at the origin, and a

unique orbit of period two in (—e,€). The fized point is asymptotically stable,
the orbit of period two is unstable.

(i1) If 0 £ o < a, then G has a unique fized point at the origin, and no

orbit of period two in (—e,e). The fized point is unstable.

Remark C.3.3. The Schwarzian derivative SG of a C3® map G : U — R
where U is an open interval of the real line, is defined as

B G///($> B §[G”(x)]2

 G(z)  2°G'(x)

SG(z)
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for every x such that G'(x) # 0. It is not difficult to verify that for the above
family G, one has

0°G? 0°G 0°G ’
W(U,O) = —2%(0,0) -3 lw(o,o)]
32
and since 2—3(0,0) = -1, 88%(0,0) = 2 SGy(0). It follows that condition

(4) in Proposition C.3.1 may be expressed as : the Schwarzian derivative
SG,(x) is negative at x = 0 at the point of bifurcation o = 0. Maps of the
real line having globally a negative Schwarzian derivative have nice global
properties, as we shall see in section D, and their global bifurcations are
reasonably well understood. The reason fo this should be apparent from the
preceding analysis : for such maps, a flip bifurcation is necessarily supercrit-
ical.

Remark C.3.4. As for the saddle mode bifurcation, two families undergoing
a supercritical (or subcritical) flip bifurcation as in Proposition C.3.1 (or
C.3.2) can be deduced from each other through a change of parameter o —
(), and an a-dependent change of variable x — h(z, a) where ¢ and h(., «)
are homeomorphisms. Similarly, the qualitative features of a flip bifurcation
are (locally) structurally stable, up to such a change of variable. Here again,
one could not get such a structural stability if the maps were linear.

C.4. The Hopf bifurcation

We consider now a one-parameter family of difference equations of the
form

Tnt+1 = G(xna Od) = Ga(xn)

defined by the C" map G : U x I — R?, where U is an open neighbourhood
of the origin of R?, and I is an open interval of the real line containing 0.
We assume that the origin is a fixed point for all admissible values of the
parameter, i.e. G(0,a) = 0 for all a. We suppose further that for each «a,
the Jacobian matrix D,G(0, «) has a pair of nonreal, conjugate eigenvalues
AMa) and Ma), with A(a) = p(a)[cosf(a) + i sinf(a)], p(a) # 0 and 6(«)
in (0, 7). The modulus p(a) and the argument 6(a) depend then in a C™!
fashion on the parameter. In order to get a bifurcation, we assume that r = 2
and that the eigenvalues pass out of the unit ircle in the complex plane as

d
a goes through 0, i.e. p(0) = 1 and d—p(O) > (0. Then the origin z = 0 is
a

asymptotically stable for @ < 0, unstable for o > 0 : there is a so-called Hopf
bifurcation at o = 0.4
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From Section A.1, there is for each a a change of variable x — h(x,«)
which brings the Jacobian matrix D,G(0, «) in its real canonical form

cosf(a)  —sinf(a)
Ba = ple) sin 0(«) cosf(a) |’

the map h being linear in z and C"! in (z, ). As noted in Section B.3, the
action on R? of the linear map y — B,y is a rotation of angle 6(«), followed
by an homothecy of centre y = 0 and ratio p(«), see Fig. B.1. Thus the family
of linear maps B, can be represented in polar coordinates by (p,0) — (p(a)p
, 04+ 0(a)). If @ < 0, all trajectories generated by vy, = Blyo converge to
the origin, while all such trajectories diverge when y, # 0 for a > 0. By
contrast, for &« = 0, the map y — By y leaves invariant every circle of the
plane centered at the origin (of course, every such circle is generally an ellipse
in the original coordinates).

Now if the maps in the family G, are actually nonlinear, they are in fact
small perturbations of the linear maps B, near the origin. Thus one should
expect the appearance of an invariant closed curve, i.e. a one-dimensional
manifold that is homeomorphic to a circle of the plane, near x = 0 and for
a small. The following set of results shows that this is indeed in general the
case.

We first look at the case where the bifurcation is supercritical. This case
arises when the origin is attracting for « = 0. Then an attracting invariant
closed curve appears for a > 0.

Theorem C.4.1. (Supercritical Hopf bifurcation). Let G : U x I — R?
define a one-parameter family of maps of the plane, where G s C" with
r 26, U is an open set in R? containing the origin, and I an open interval
of the real line containing 0. Assume

(1) G(0,c) =0 for all « ;

(2) for each a, D,G(0, ) has a pair of nonreal, conjugate eigenvalues A(«)
and A a), with AM(a) = p(a)[cosf(a) + i sinf(a)], p(a) # 0 and ()
in (0,7) ;

(3) p(0) =1 and 3—2(0) >0;

(4) 6(0) # 27/q forq=1,2,3 or 4.
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Then there is a C™2 a-dependent change of coordinates that brings the family
Go = G(., @) into the polar coordinates form

(p,0) = (p(@)p — al@)p® + p*R(p, 0, @), 0 + O(a) + b(a) p* + p°S(p, 6, )

where R(p,0,a) is C™*, S(p,0,a) is C™3, while a(a) and b(a) are C"™3
and C"=2 respectively. If in addition,

(5) a(0) >0

then the origin is asymptotically stable for o« = 0. Furthermore, there exist
a; < 0 < ay and an open neighbourhood V of the origin in R? such that

(i) If oy < a <0, then G, has a unique fixed point, at x = 0, and no
invariant closed curve in V. The origin is asymptotically stable.

(i) If 0 < a < ag, then G, has a unique fixed point, at © = 0, and a
unique closed invariant curve in V. The origin is unstable, while the
wmwvariant closed curve is asymptotically stable.

The first part of the theorem states that, if one puts aside the “strong
resonance” cases 0 = 2mw/q, ¢ = 1,2,3 or 4 (these cases are exceptional
anyway), each map G, may be approximated for x small, after a suitable
change of variables, by the transformation 7T, given in polar coordinates by

(p.0) = (p(e)p — a(a)p® , 0 + 0(a) + b(a)p?)
If the maps G, are indeed nonlinear, one should have in general a(0) # 0
and b(0) # 0. The transformation T, is the composition of a (p-dependent)
rotation and of an homothecy. The contracting or expanding properties of
the transformation are thus most easily analysed by looking directly at the
associated onedimensional difference equation

(6) Prt1 = p(@)p, — ala)pl = v(p,, @),

for p,, pny1 > 0. In particular, pf is a fixed point of v, = 7(., ) if and
only if T}, leaves invariant the circle of the plane centered at z = 0 of radius
Pk Moreover, p? is asymptotically stable in the dynamics generated by v, if
and only if the corresponding invariant circle is asymptotically stable in the
dynamics generated by T,,.

It is easily seen that, if a(0) # 0 and if one allows negative values of p,
the family v, undergoes a pitchfork bifurcation at o = 0. Indeed v is C?, and
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2 3
for all o, v(0, ) = 0, g—’;(O,a) = p(a), g—pZ(O,a) =0, g—p’Z(O,a) = —6a(a).
Thus if a(0) > 0, the origin p = 0 is asymptotically stable for o = 0, and the
bifurcation is supercritical (Proposition C.2.3). What happens in that case
to the graphs of v, near p = 0, for o small, is represented in Fig. C.10.a.
In terms of the dynamics associated with the transformation T,, for small
a <0, the origin of R? attracts all nearby points. For small « > 0, the origin
becomes unstable and all small z # 0 in R? are attracted to an invariant
circle centered at x = 0, of radius p}, = /(p(a) —1)/a(c). The last part
of the theorem states that this picture is qualitatively unchanged when one
goes back to the original family G,. The corresponding bifurcation diagram
is given in Fig. C.11.

The same line of reasoning permits to see easily what happens when
a(0) < 0. In that case the origin is unstable at @ = 0, and the family ~,
undergoes a subcritical pitchfork bifurcation (Fig. C.10.b). In terms of the
dynamics associated with the transformation T, for small a < 0, the origin
is asymptotically stable, but there is a repelling invariant circle centered at
z =0, of radius p, = \/(p(a) — 1)/a(c). When « crosses 0 from below, the
repelling invariant circle coalesces to the origin and for small a > 0, the
fixed point = 0 is unstable. The following result states that the picture
remains qualitatively the same when going back to the original family G,.
The corresponding bifurcation diagram is given in Fig. C.12.

Theorem C.4.2. (Subcritical Hopf bifurcation). Assume in the preceding
theorem that (5) is replaced by

(5) a(0) < 0.

Then the origin is unstable for o = 0. Furthermore, there exist a; < 0 < auo,
and an open neighbourhood V' of the origin in R? such that

(i) If an < a < 0, then G, has a unique fixed point, at x = 0, and a

unique invariant closed curve in V. The origin is asymptotically stable,
the closed curve is unstable.
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(i) If 0 £ o < ag, then G, has a uniquefized point, at x = 0, and no
invariant closed curve in V. The origin is unstable.

The sign of the coefficient a(0) determines whether the bifurcation is
supercritical or subcritical. The following proposition shows how to obtain in
principle this coefficient - although the practical computations involved are
sometimes tedious.

Proposition C.4.3. Under the assumptions of Theorem C.4.1, let X\, X be
the conjugate nonreal eigenvalues at o = 0, and assume that coordinates in
the plane have been chosen to put Gy in the form

R T R G

Then one has °

=2
1 -2\ 1 —
a(0) = Re [—( 1_ )\) C11 Co| + B |611|2 + |Co2|2 — Re(Aea),
where

8020 = (fmc - fyy + 2gwy) + i(gmm - gyy - 2f:}cy)

dert = (foo + fyy) +i(Gae + gyy)

8cp2 = (f:mc - fyy - Qme) + 2(g:m - ny + 2f:ry>

16cy; = (fxwm - fazyy + Gozy gyyy) + 2<gxxa: + Gayy — fxmy - fyyy)

in which the partial derivatives of f and g are evaluated at (z,y) = (0,0).

Remark C.4.4. The invariant closed curve C,, of which the existence is
asserted for a > 0 in Theorem C.4.1, may be represented as the locus of all
points of the plane that have the polar coordinates (p(6, «), ), where 6 is
an abitrary real number, p(6,«) # 0 for all # and o > 0, and p is periodic
of period 27 in 0, i.e. p(0 + 27, ) = p(f,«). Under the assumptions of
the Theorem, ay can be chosen small enough so that the map p is C"° for
0 < a < ag. The union of all invariant closed curves C, for a in (0, as),
together with the origin of the plane for @ = 0, form in the bifurcation
diagram of Fig. C.11, a two dimensional C"~® manifold }_ that is actually
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tangent to the z-plane at o = 0. This does not mean that > is C* (is C* for
all k = 1) when G is itself C*°, however. In such a case, one can find ay, > 0
for each k = 1 such that p and thus 3 is C* on (0, ay). Yet the sequence ay
will typically tend to 0 as k tends +oo. The same regularity result holds for
a < 0 in the case of a subcritical bifurcation.

Remark C.4.5. This remark is the analogue of Remark C.2.4 for the case
of a pitchfork bifurcation. One can verify that if the family G, undergoes
a subcritical Hopf bifurcation when « goes through 0 from below, then the
family of its local inverses G ' undergoes a supercritical bifurcation when «a
goes through 0 from above. The family of local inverses is defined as follows.
Since the eigenvalues of D,G(0,0) have modulus 1, this matrix is invertible.
From the Implicit Function Theorem, the equation G(z,«) —y = 0 can then
be solved uniquely in z for z, a,y small, to yield z = F(y, a) where F' may
be assumed to be defined on V' x J, where V is an open set of the plane
containing the origin, and J is an open interval containing 0. For every « in
J, F, = F(.,«) is indeed a local inverse of G, = G(., @), and the family F,
undergoes a supercritical bifurcation when « goes through 0 from above.

Remark C.4.6. The strong resonance cases 0(0) = 27/q with ¢ =1, 2,3, 4,
are ‘nongeneric” in the class of all nonlinear maps. The study of what hap-
pens in these cases involves some difficult problems. For more information,

see Whitley (1983, Section 2.5), and Ioos (1979, Chapter IV).

Remark C.4.7 (Motion on the invariant closed curve). Once we have
obtained an asymptotically stable invariant closed curve C, in a supercritical
Hopf bifurcation (for a > 0 in Theorem C.4.1), it remains to understand the
behaviour of the trajectories generated by the difference equation x,.; =
Gao(zy), when it is restricted to C, (the results concerning a supercritical
bifurcation can then be transposed to the subcritical case, for instance by
using Remark C.4.5).

Under the assumptions of Theorem C.4.1, for small o, the map G, is only
a small perturbation, after a suitable change of variables, of the transforma-
tion T, given in polar coordinates by

(p,0) = (p()p — a(@)p®,0 + () + b() p?)

Thus for small o > 0, in this system of polar coordinates, the restriction of
(G, to the invariant closed curve C, is a small perturbation of the restriction
to the circle centered at the origin of radius p, = /(p(a) — 1)/a(a), of a
rotation R, of angle 6% = 0(a) + b()(p)>.
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Let us first look at the dynamics generated by R,. If 67 /27 is rational,
i.e. of the form p/q where p and ¢ are positive integers that are relatively
prime, every point of the circle is periodic with period ¢ (i.e. one goes back
to it when applying ¢-times the rotation R, ). If 67, /27 is irrational, then no
point of the circle is periodic : the trajectory generated by an arbitrary point
of the circle is dense in that circle.

Knowledge of the properties of the restriction of the approximating ro-
tation R, to the invariant circle of radius p?, is not enough, unfortunately,
to state the properties of the original family G, restricted to the invariant
closed curves C,. The reason is that such rotations R, are not structurally
stable : the fact that 67 /27 is rational or irrational can be altered by a
small perturbation of the map. It can be shown nevertheless that, as far as
the behaviour of the restriction of G, to C, is concerned, the typical (i.e.
“generic”) picture is the following one. Assuming that G is C*°, and if the
parameter as appearing in Theorem C.4.1 is chosen small enough

1. there is a set A that is open and dense in (0, az) such that for every
a in A, the map G, has two families of periodic orbits, all having the same
(a-dependent) period, on the invariant closed curve C,. One family is stable,
the other unstable.

The best way to visualise what happens is to look at the path followed in
the complex plane by the eigenvalue A(«) of the Jacobian matrix D,G(0, ),
as shown in Fig. C.13.a. Consider a complex number of the form cosf + ¢
sin f represented by the point M on the unit circle, with § = 27p/q, where
p and ¢ are positive integers that are relatively prime, and ¢ # 1,2,3,4
(again, we put aside the strong resonance cases). Then there is a narrow
cusped open region, near the unit circle, that lies between two curves passing
through M and having a common tangent there as in the hatched region of
Fig. C.13.a, with the following property. Suppose that the point representing
the eigenvalue A(«) lies in this narrow “tongue” for a > 0 in some interval
(o/,a”). Then for every « in that interval, G, has two families of periodic
orbits, of period ¢, on the invariant closed curve C,. The periodic orbits of
one family are unstable, while the periodic orbits of the other family are
asymptotically stable (in the dynamics generated by the restriction of G,
to C,,). The unstable and stable periodic orbits “alternate” on the invariant
closed curve ; an example of such a pattern is given in Fig. C.13.b, with
q = 6 (the arrows indicate stability or unstability ; they are drawn as if the
trajectories were continuous, the interpretation in discrete time should be
apparent).
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Since rational numbers are dense in the real line, the path followed by
the eigenvalue A(a) in the complex plane will cross infinitely many such
distinct little tongues. The union A of the corresponding intervals (o, /") of
the parameter will be open and dense in (0, az) if o is small enough. Thus
for most values of « in (0, o), the asymptotic behaviour of the trajectories
generated by G, on the invariant closed curve will be periodic. It should be
remarked that many of the periods will be large, i.e. will correspond to a
large q.

2. Although the above mentioned set A is open and dense in (0, as), its
complement in that interval is not negligible from a measure theoretic view-
point. Indeed, the set B of parameters in (0, a2) such that the restriction of
G, to the invariant closed curve C,, is topologically conjugate to a rotation
of angle 6 of the unit circle of the plane, with §/27 irrational, has positive
Lebesgue measure m(B) > 0. In that case, any orbit generated by the re-
striction of G, to C, is aperiodic : it is dense in C,. In fact, the relative
frequency of such aperiodic behaviour is high for o > 0 small : the ratio
m(B)/asy tends to 1 when ay goes to 0.

Remark C.4.8. It should be clear from the previous remark that the qual-
itative features of a Hopf bifurcation cannot be structurally stable. After a
perturbation, the path followed by the eigenvalue A(«) would cross the unit
circle at a different point, and thus meet different little tongues as in Fig.
C.13.a. The two families could not be conjugate.

Remark C.4.9. (Degenerate Hopf (Chenciner) bifurcation). The condition
a(0) # 0 is generally satisfied (is ”generic”) in the class of all families of
nonlinear maps. Analogues of Theorems C.4.1 and C.4.2 are actually available
in the case a(0) = 0, that has been thoroughly studied by Chenciner (1985a,
b, 1988), see also Iooss (1979, Chapter III, Section 2) or Kuznetsov (1998).
We give here a summary heuristic account of that degenerate bifurcation for
a(0) = 0 and a(0) very small.

Existence and stability of an invariant closed curve in the local dynamics
induced by G, near the steady state x = 0, amounts essentially to existence
and stability of invariant circles in the dynamics generated by the Taylor
approximation T, of the family G, in polar coordinates, or equivalently to
existence and stability of fixed points p¥, > 0 of the associated onedimensional
difference equation p — 7,(p) as in (6). Under appropriate (higher order)
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differentiability conditions, taking into account higher order terms when a(0)
is 0 or is very small, leads to the higher order difference equation :

(7) Prsr = pla)p, — ala)pl — c(a)pl, = Fo(pn)-

For given «a, an invariant circle in the dynamics generated by the Taylor
approximation T, is thus identified with a solution p} > 0 of the equation
3.(p) = p, or equivalently with a positive solution z* = (p%)? > 0 given by

Ly 0@) y  afla)  pla) -1
(8) (o + 20((1)> Cdela)  ca)

We focus on the supercritical case, i.e. ¢(0) > 0 and thus c¢(a) > 0 for
a small. In the benchmark configuration a(0) = 0, the graph of 7,(p) =
p — c(0)p° for a = 0 looks like that of v,(p) in Fig. C.10.a, which implies
that the graphs of 4,(p) for a small, near p = 0, are also similar to those of
74(p) in that same Fig. C.10.a. For a < 0, the origin p = 0 is stable in the
dynamics induced by 7, or T, while there is no invariant circle nearby. For
a > 0, the origin p = 0 becomes unstable and gives rise to a stable invariant
circle.

The case where a(0) # 0 is small, is a slight perturbation of the above
benchmark configuration. The picture is in fact qualitatively the same when
a(0) > 0 and thus a(a) > 0 for a small. For a < 0, the two solutions 2}
and z}_ of (8)

L ale) o) ple) 1

“at = T 2c(0) T M2 (w) c(a)

are both negative. The origin p = 0 is stable and there is no invariant circle
nearby. For a > 0, the origin p = 0 loses its stability and is surrounded by
a stable invariant circle corresponding to the unique solution of (8) that is
positive, i.e. 2}, > 0. This configuration conforms to what is predicted for a
standard non-degenerate Hopf bifurcation when a(0) > 0.

The picture is slightly different when a(0) < 0 and thus a(a) < 0 for «
small. Since a(0) is very small, there is oy < 0 such that the right hand side
of (8) is 0 when o = v, and positive if and only if @ > ag. Therefore (8)
has no real solution when a < o : the origin p = 0 is then stable and there
is no invariant circle nearby. When a = ag, (8) has two positive identical
real solutions 2z}, = zi = —a(a)/2c(a) > 0, that separate and remain
positive, 0 < 2 < 2., when a goes up. Thus when ay < a < 0, the
origin p = 0 is still stable, but two invariant circles appear nearby through a
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saddle node bifurcation when a goes up through oy, the invariant circle with
a smaller (resp. larger) radius being unstable (resp. stable). When o« goes
up through 0, the origin p = 0 undergoes a subcritical Hopf bifurcation as
predicted by the general theory since a(0) < 0, where the unstable invariant
circle of smaller radius coalesces with the origin, to disappear and leave the
origine p = 0 unstable (the smaller solution z}_ becomes negative). The
novel feature here is the presence all along of the stable invariant circle of
larger radius corresponding to the larger solution 2}, > 0, for & > ap and in
particular for a > 0.

The outcome one gets for the original two-dimensional dynamics gener-
ated by the family of maps G, is essentially a small perturbation of the
above picture. In a nutshell, for a supercritical degenerate Hopf (Chenciner)
bifurcation (a(0) small, ¢(0) > 0):

- for a(0) = 0 small, the picture is qualitatively identical to what one
gets for a supercritical Hopf bifurcation. For o < 0, the stationary state
x = 0 is stable, while there is no nearby invariant closed curve. For o > 0,
the stationary state becomes unstable and gives rise to a nearby attracting
mwvariant closed curve.

- For a(0) < 0, small, there exists ag < 0 small such that :

- for a < «u, the stationary state x = 0 s stable, while there is no
nearby invariant closed curve.

- When « goes through oq from below, there is a saddle node bi-
furcation of invariant closed curves : two identical invariant closed curves
appear near the stable stationary state x = 0 for a = ag and separate for
ap < a < 0, the smaller invariant closed curve being unstable and the larger
one being stable.

- When « goes through 0 from below, the smaller unstable invari-
ant closed curve coalesces with the stable stationary state x = 0 through a
subcritical Hopf bifurcation.

- For a > 0 small, the stationary state © = 0 becomes unstable and
coexists with the remaining larger stable invariant closed curve.

Symmetric statements can be obtained for the case of a subcritical degen-
erate Hopf (Chenciner) bifurcation, when a(0) is zero or is very small and
c(0) < 0. When a(0) < 0, the outcome is qualitatively what one gets in a
subcritical Hopf bifurcation. For a@ < 0, the stationary state x = 0 is stable
but is surrounded by an unstable invariant closed curve (corresponding to
the unique positive root of (8), 2%, > 0). When o goes up through 0, the
unstable invariant closed curve coalesces with the stationary state x = 0, to
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disappear and leave it unstable. The picture is slightly different when a(0)
is positive, so that a(a) > 0 for o small, with a saddle node bifurcation of
invariant closed curves occuring for ag > 0 small in such a case. For a < «ay,
there is an invariant closed curve (corresponding to the largest root of (8),
2%, > 0) near the stationary state z = 0, that is unstable, and stays away
from x = 0. When a < 0, the stationary state x = 0 is unstable, and there
is no other invariant closed curve nearby. When a goes up through 0, the
stationary state undergoes a supercritical Hop bifurcation as predicted by
the general theory when a(0) > 0. It becomes unstable, and a small stable
invariant closed curve appears near x = 0 (corresponding to the small root
of (8) that becomes positive, z > 0) and inside the larger unstable invari-
ant closed curve. When « goes up through ay, the smaller stable and larger
unstable invariant closed curves coalesce together and disappear through a
saddle node bifurcation of invariant closed curves, to leave alone the unstable
stationary state.

C.5. The center manifold reduction

Local bifurcations appear to be hard to analyse in R™, if m is large. For-
tunately, as mentioned in Section C.1, an application of the theory of center
manifolds permits to reduce the dimension of the problem to the number of
eigenvalues the modulus of which goes through 1 in the bifurcating family.
We exploited that fact in the previous sections by looking at the saddle node
or the flip bifurcations directly for maps of the real line, and by analysing
the Hopf bifurcation directly in the plane. We show now precisely how to
implement such a reduction of the dimension of the problem.

Consider a family of difference equations defined by the map G : U x [ —
R™, where U is an open set of R™ containing the origin, I is an open interval
of the real line containing 0, and G is C", with » = 2. We assume that the
origin of R™ is a fixed point of each map G, = G(.,«a) of the family, i.e.
G(0,a) = 0 for all a.” We let A, be the Jacobian matrix D,G(0,«), and
assume that Ag is invertible and has some eigenvalues of modulus 1. The
family will thus generally undergo a local bifurcation (near the origin) at
a = 0. We assume furthermore that a linear change of variables has brought
Ap in its real canonical form, i.e. Ay =diag{C, B}, in which C' correspond
to the center space F¢ of Ay, and B to the direct sum of the stable and
unstable spaces F'* and F™™ of A. We shall write accordingly = = (&, ), where
¢ belongs to F° and n to F* + F*.

It is convenient here to consider that the map G defines a single difference
equation in R™*! by

Ap+1 = Op, Tpt1 = G(l’n, an)
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The trajectory generated by this difference equation, that corresponds to
the initial condition (v, xg), or more precisely its projection on the z-space,
coincides then to the orbit of zy generated by the map G,. Analysing the
local bifurcation of the family G, near x = 0, for o small, is thus equivalent
to studying the local properties of the map H : [ x U — R™"! defined by

(v, x) = (o, G(z, )

near its fixed point &« = 0, x = 0. One can then apply the local analysis
developed in Section B.5.

Since G(0, ) = 0 for all «, the partial derivatives of G with respect to
a, evaluated at x = 0, a = 0, are equal to zero. Thus the Jacobian matrix
DH(0,0) is block diagonal and given by

1
DH(0,0) = C
D

The stable and unstable spaces of DH(0,0) are thus equal to {0} x F** and
{0} x F* respectively, while its center space is R x F*.

According to Theorem B.5.1, there is a neighbourhood V of (0,0) in R™*!
such that H has a local center manifold W(CO’O) in V. Such a center manifold is
C™! and has the same dimension as the center space of DH(0,0), i.e. Rx F*,
to which it is tangent a a = 0, £ = 0, n = 0. More importantly, it is locally
attracting : if (o, x) and H"(o, x) are in V for all n 2 1, then the distance
between H"(a, z) and W tends to 0 as n — +oc. This fact implies that
any recurrent behaviour that may appear, or disappear, in the bifurcating
family, such as fixed points, periodic orbits, invariant closed curves, must lie
in a center manifold W(%,O)' This result is the key to the reduction of the
dimension of the problem.

To be specific, assume that the difference equation associated with H, has
the following representation
Opy1 = Qp

£n+1 = C&n + f<§n7 Mhs Oén)

nn+1 = Bnn + g(fn? Mns an)

in which f and g are defined for (£,n) € U, a € I. Of course the last two
lines stand for x,,.1 = G(z,, ay,). So, by construction, the functions f and g
are C", r 2 2, f(0,0,a) =0 and ¢(0,0, ) = 0 for all «, and the first partial
derivatives of f and g with respect to & and 7, vanish at £ = 0,7 =0, a = 0.
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In this system of coordinates, a local center manifold W(CO’O) can be repre-
sented as the graph of a C"~! function n = v(«, £), defined on a small open
neighbourhood of a = 0, £ = 0 which we may take of the form J x V| where
J is an open interval of the real line containing o = 0, and V' an open set in
F* containing £ = 0. By definition, v and its first partial derivatives vanish

t (0,0). According to the analysis of Section B.5, the motion on the local
center manifold near a« = 0, x = 0, is governed by the difference equation,
for (ay,,&,) in J XV,

Opy1 = &

gn—&-l = C gn + f(§n77(an7£n)7an) = F(ﬁn’ Oén)7

with 7, = v(an,&,) for all n = 0. In fact (Theorem B.5.3), the map H is
locally topologically conjugate to

a—a, £ =T a),n— By, (a,§)in J XV, nin F° 4+ F*“.

Studying the local bifurcation of the family GG, in R™ amounts to analysing
the local bifurcation of the family I'y, = I'(.,«) : V' — F*°. It is possible to
show that v(«,0) = 0, in which case I'(0,«) = 0, for all « in J, see looss
(1979, Chapter V, Section 3). One has moreover D.I'(0,0) = C, and C'is a
matric the eigenvalues of which have all modulus one. The dimension of the
bifurcation problem is indeed reduced to the number of eigenvalues of the
Jacobian matrix D,G(0, ) that have modulus one at o = 0. In particular,
if only a simple real eigenvalue, or only a pair of simple nonreal conjugate
eigenvalues, have modulus one at @ = 0, one may try and apply to the fam-
ily I',, the bifurcation theorems presented in the preceding three sections, on
the real line or in the plane. A precise representation in the ambient space
R™ . of the bifurcating fixed points, periodic orbits or invariant closed curves,
will then be obtained through the transformation £ — (&, 7v(«,§)), for each
a. Stability or unstability in R™, in the dynamics generated by G, will then
be deduced from the fact, already mentioned, that H is locally topologically
conjugate to @« — «,& — I'(§,a),n — Bn. In particular, if all eigenvalues
A of the matrix B satisfy |A\| < 1, and if an object K in F* (fixed point,
periodic orbit, etc ...) has been found to be asymptotically stable in the dy-
namics generated in F'° by I',, the image of K in R™ after the transformation
& — (&,7(,§)), is also asymptotically stable in the dynamics generated in
R™ by G,.

Remark C.5.1. In practice, in order to apply the bifurcation theorems of the
preceding sections, one needs only to know the partial derivatives of I'(£, a),
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and thus of y(«, &), at @ = 0, £ = 0. One can compute them by using the
identification technique described in Remark B.5.4.

Remark C.5.2. We already noted that «(a,0) = 0 for all « in J. For every
@, the graph in R™ of v(@, .) represents the section of W) in R™! by the
hyperplane of equation o = @ ; it is therefore a local invariant manifold Wx
of Gz near (¢,1) = 0, having the same dimension as F*°. Since W,0) 18 locally
attracting in the dynamics generated in R™*! by the map H, the manifold
W, is also locally attracting in the dynamics generated in R™ by G, for
each . Since by construction D¢v(0,0) = 0, W, is actually a local center
manifold of G. Under some regularity conditions, it can be shown that for
a # 0, the manifold W, is tangent to the generalized eigenspace of DG, (0)
corresponding to the eigenvalues that cross the unit circle at o = 0, see looss
(1979, Chapter V.3, Lemma 3).

The fact that local center manifolds need not be unique is not troublesome
here. Any invariant closed set that bifurcates from the origin in R™ for the
family G, such as fixed points, periodic orbits or invariant closed curves,
must belong to W, for each «, and this no matter which specific choice
of W(CO,O) was made. For a precise statement, see Iooss (1979, Chapter V.3,
Lemma 4).

Notes on the literature

The presentation of the saddle node and flip bifurcations in Sections C.2
and C.3 is a direct transposition of Whitley (1983, Section 1.1). The material
of Section C.4 on the Hopf bifurcation is adapted from Iooss (1979, chap. III),
Whitley (1983, Sections 2.2, 2.3 and 2.4), Guckenheimer and Holmes (1983,
chap. 3.5). Other useful references are Carr (1981, chap. 3.4), Chenciner
(1983), Marsden and McCraken (1976, Section 6). Remark C.4.9 on the de-
generate Hopf (Chenciner) bifurcation is adapted from the presentation made
in Gaunersdorfer, Hommes and Wagener (2006). The material on the center
manifold reduction is taken from looss (1979, chap. V), Marsden and Mc-
Craken (1976, Section 2), Carr (1981, chap. 2.8), Guckenheimer and Holmes
(1983, chap. 3.2).
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FOOTNOTES TO SECTION C

(1)

(2)

(5)

(6)

(7)

Local bifurcations associated with several or multiple eigenvalues cross-
ing the unit circle are far more difficult to handle, and at any rate are
“rare” (nongeneric).

We could have assume G(0,0) = 0 instead of G(0, ) = 0 for all a. The
origin is then a fixed point of Gy = G(.,0), but since 2—5(0,0) # 1,
the fixed point would persist for small o, and one would go back to the

formulation of the text by translating it to the origin, according to the
procedure outlined in the last part of Remark C.1.1.

By continuity, we are sure that all G? are well defined on a small com-
mon open interval containing 0 for o small enough. Thus all conditions
of Proposition C.2.3 are satisfied.

We could have assumed only G(0,0) = 0 instead of G(0,) = 0 for
all . For then, since D,G(0,0) has no eigenvalue equal to 1, the fixed
point would persist for small o, and one would translate it to the origin
according to the procedure outlined in Remark C.1.1.

For any complex number z = x + iy, the notation Re(z) stands for the
real part of z, i.e. Re(z) = x.

What follows is adapted from Whitley (1983, Sections 2.3 and 2.4). See
also Iooss (1979, chap. I11.2).

Here again, this simply means that there is a persistent fixed point of
G,, that has been translated to the origin by a suitable a-dependent
change of coordinates.
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D. GLOBAL BIFURCATIONS AND CHAOS

We were interested in the preceding section in local bifurcations of a
family of difference equations x,.; = G,(x,), i.e. qualitative changes of
the corresponding trajectories that can be observed in every, however small,
neighbourhood of a fixed point of the family, when the indexing parameter
varies. Such qualitative changes may of course occur only in some neigh-
bourhood of the stationary state, sometimes quite far away from it. In that
case, the bifurcation is global. Quite complex phenomena may then obtain
: periodic orbits or even “chaotic” trajectories that look random although
they are generated by a purely deterministic system. Many of these “exotic”
phenomena are still poorly understood. We shall content ourselves here to
give a brief account of what happens in the case of one-dimensional nonlinear
difference equations, and of so-called “homoclinic” bifurcations of diffeormor-
phisms of the plane. Some notes at the end of the appendix will permit the
interested reader to pursue her/his own inquiry.

D.1. Maps of an interval

We consider the difference equation

(D.1) Tnt1 = G(2)

where z is a real number. We are interested in trajectories generated by (D.1)
that do not diverge to infinity, so we shall assume that G leaves invariant

an interval [a,b], and consider only the restriction of G to that interval, i.e.
G :la,b] — [a,b].

If G is continuous, it has a fixed point in the interval. More generally, (D.1)
may have solutions that are periodic, or display an irregular, “turbulent”
behaviour. We say that x is a periodic point of period k = 1, if z is a
fixed point of the k-th iterate of G, i.e. * = G*(x), and if k is the smallest
integer having this property. As usual, the iterates of G are defined recursively
through G7(z) = G(G’7!(z)). The corresponding periodic orbit, or cycle, is
then the set {x, G(x),...,G*1(x)}.

Existence of cycles

Global conditions ensuring the existence of cycles are relatively easy to
find and to verify in this simple context, when the period is small. We give
an example for cycles of period two and three.
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Lemma D.1.1. Assume that G : [a,b] — [a,b] is continuous. Let T in (a,b)
be a fixred point, with G(x) > x for all x in (a,T). If there exists xo in (a,T)
such that G*(z¢) < xo (resp. G3(xg) < w0), then G has a cycle of period two
(resp. three).

We give a short proof in the period two case. Let xy in (a,Z) be such
that G?(xy) < zo. Assume first that the end point a is not a fixed point of
G. Since G*(xp) = a, by continuity, G* has a fixed point = in [a, o] that
is not a fixed point of G : x is a periodic point with period 2. If on the
other hand G(a) = a, one has G*(z;) > x; for z; close enough to a. Then,
again by continuity, G* has a fixed point in (1, 2], which is a periodic point
with period 2. The proof for the period three case follows the same line. The
reader will easily verify that the argument works for any period k that is
prime.

Fig. D.1 represents the graph of a map G that satisfies the conditions
of the Lemma, and that has accordingly a cycle of period two and a cycle
of period three. The example shows that we should generally expect cycles
of different periods to coexist. The following result characterizes the way in
which such a coexistence may obtain. It implies in particular that a continu-
ous map from an interval into itself that has a cycle of period three, as in Fig,.
D.1, has in fact cycles of every period, and can thus generate quite complex
trajectories.

Theorem D.1.2 (Sarkovskii). Consider the following ordering of the integers

30T >
= 232527 .

If the continuous map G : [a,b] — [a,b] has a cycle of period k, then it has
also a cycle of period k' for all k' < k.
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Stability

Finding which cycles are stable, if there are any, is an important task
when one is faced with so many possible equilibria of the system. Stability
and asymptotic stability were defined in Section B for a fixed point or for any
closed set (Remark B.1.1). The definition applies therefore to a periodic orbit
(w0, 1, ..., T_1), where G¥(xg) = 29 and G™(xg) = z,, # 2o forn =1,...,k—1.
As a matter of fact, since zg is a fixed point of G*, (asymptotic) stability
of the periodic orbit is equivalent to the (asymptotic) stability of zy in the
difference equation associated to G* (Remark B.1.2). If G is continuously
differentiable, we have from the chain rule of differenciation

(D.2) (G*Y (w0) = G (wh_1) -.. G'(x0).

Thus if a = (G*)'(x¢), the cycle is asymptotically stable when |a| < 1,
unstable when |a| > 1. In the sequel it will be useful to say that the periodic
orbit is weakly stable if |a] < 1. This terminology is a slight abuse of language,
since when |a| = 1, the cycle may be stable or unstable depending upon the
sign of higher order derivatives of G¥ at x, but it will turn out to be consistent
in the cases under consideration. The cycle will be said superstable if a =0 ;
in view of (D.2), this means that a critical point of G, i.e. a point x such that
G'(x) = 0, belongs to the periodic orbit. Finally, one may remark that none
of the foregoing definitions depends upon the particular point chosen on the
period orbit. Indeed, we get, again from the chain rule of differenciation, for
any element z,, of the cycle

(G*Y(x,) =G'(xp_1) ... G"(20)G (2h_1) ... G'(20)
= (G*)'(x0).

There is little hope to be able to say something on the stable periodic
solutions of (D.1) if one does not make simplyfing regularity assumptions
about the map G, and its iterates. The first regularity assumption we shall
make is that G is single peaked.

(D.3) G is C' and single peaked, i.e. there ewists z* in (a,b) such that
G'(z*) = 0, with G'(z) > 0 for x < z* and G'(xz) < 0 for z > z*.
Moreover G(x*) =b.

The assumption G(z*) = b involves no loss of generality whenever G(z*) >
x*, since one can then restrict attention to the invariant interval [a, G(z*)]. The
assumption implies that G has a unique fixed point T in (z*,b). The next
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condition states that G has no fixed point in the interval (a,z*), and that if
the end point a is a fixed point, it is unstable.

(D.4)  G(z) >z forall zin (a,z*), and G'(a)>1 if G(a)=a.

The assumption that G is single peaked rules out multiple ups and downs
in the graph of G. The curve representing this graph may still make a lot of
“little waves” within each interval of monotony of G, and that is something
we wish to avoid, not only for G but also for the iterates G™.

It turns out that the phenomenon is indeed prevented to occur if one
assumes that G has a negative Schwarzian derivative. This is a global version
of a condition that we already met when studying the local bifurcations of
maps of the real line : we saw that a flip bifurcation is supercritical if, and in
general only if, the value of the Schwarzian derivative of the map, evaluated
at the fixed point, was negative (Remark C.3.3). If we note the Schwarzian
derivative (assuming that G is of class C?)

_ GIII (I‘)
G'(z)

SG(z)

DN Lo

I

the condition reads

(D.5) G is C® and SG(z) < 0 for every x such that G'(x) # 0.

One can verify by direct computation that
SG = —2|G""? [l6"| 77"

So the assumption (D.5) —which we will write for short SG < 0— means
that |G’ |_1/ ? is convex on every interval of monotony of G. It will be satisfied
in particular when |G'| or Log |G’| is concave on such intervals. One may
note, incidentally, that the concavity of G is neither necessary nor sufficient
to guarantee SG < 0.

The next fact implies that assumption (D.5) rules indeed out “little
waves” not only in the graph of GG, but also in the graphs of all its iter-
ates.

Lemma D.1.3. 1) If SG < 0, then |G'| has no positive local minimum.
2) For any two C® maps G and H from the real line
into itself, one has

S(Go H)(x) = SG(H(x))[H'(z)]> + SH(x).
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Thus SG < 0 and SH < 0 imply S(G o H) < 0. In particular, SG < 0
implies SG™ < 0 for all n = 1.

It turns out that the assumption SG < 0 achieves a lot more. Indeed,
when G is single peaked, i.e. satisfies assumptions (D.3) and (D.4), there
exists at most one weakly stable cycle, as the following theorem shows. To
state the results most conveniently, it will be useful to say that a periodic
orbit P attracts a point z if the set of limit points of the sequence of all
iterates G"(z), as n tends to 400, coincides with P.

Theorem D.1.4. Assume that G : [a,b] — [a,b] satisfies (D.3), (D.4) and
(D.5). Then

1) the map G has at most one weakly stable periodic orbit. This periodic
orbit lies in the interval [G(b),b].

2) If G has a weakly stable periodic orbit, it attracts the critical point x*.
If in addition

(D.6) G" (2 < 0,

the weakly stable periodic orbit attracts all points of the interval |a, b,
except for a set of Lebesque measure 0.

This result is remarkable for it shows that if we restrict attention to those
maps that satisfy the regularity conditions (D.3) through (D.6), we are sure
that there exists at most one weakly stable periodic orbit, even though there
may be an infinity of cycles. When such a stable periodic orbit exists, it
attracts actually most points of the interval. The last feature yields a nice
practical method to discover the stable cycle when it exists. It suffices indeed
to choose at random a point in the interval, to iterate it by using a computer,
and to check whether the iterates converge to a periodic trajectory. If they do,
we are sure that the limit cycle is weakly stable (if if were not, one would not
have converged to it, if only as a result of rounding off errors). Since iterations
have to be stopped after a finite time in practice, this experimental method
will enable us to discover cycles that have not too large a period, and that
are attracting enough. Of course, this way of proceeding will not allow us
distinguishing between the presence of a weakly stable cycle that has a very
long period or that is very weakly attracting, and the absence of any stable
cycle.

The foregoing theorem can also be used to construct maps satisfying (D.3)
through (D.5), that have no stable cycle : it suffices that the iterates of the

o6



critical point * do not converge, or that they fall upon an unstable cycle. Fig.
D.2.a and b give an example of such a pattern, in which the iterates of the
critical point hit an unstable fixed point. The maps pictured in these figures
satisfy the conditions of Lemma D.1.1 ; they have thus a cycle of period
three, and therefore from Sarkovskii’s theorem, cycles of every period. None
of these cycles is stable, however, when the maps have a negative Schwarzian
derivative. In such a case, for any initial condition that does not belong to
a periodic orbit, the corresponding trajectory will be aperiodic no matter
how long one waits. Maps in this category are good candidates to portray
“turbulent” or “chaotic” behaviour. We shall go back to such maps later on
when dealing specifically with that issue.

Remark D.1.5. It is not difficult to verify that assumptions (D.3), (D.4) and
(D.6) are preserved when making a change of variable of the form x — h(x),
where h is a C" diffeomorphism that preserves orientation, i.e. such that
R (xz) > 0 for all z. By contrast, the condition SG < 0, as any global con-
vexity assumption, is not preserved through a nonlinear change of variable.
In practice, one may get a map F' that represents “naturally” a particular
physical or social phenomenon, and that does not have a negative Schwarzian
derivative. Theorem D.1.4 applies nevertheless if one of the topological con-
jugates of F, say GG, does satisfy SG < 0. That remark applies of course also
to the results below that use the negative Schwarzian derivative condition.

Bifurcations

Consider a family of maps G, indexed by the real number . When the
parameter varies, the map G,, or one of its iterates G7, may undergo a bi-
furcation. Since we are considering here maps of the real line, the bifurcation
may be of the saddle node type (Section C.2), or a flip bifurcation (Section
C.3). Moreover, if each element G, of the family is assumed to have a negative
Schwarzian derivative, any iterate G, has the same property, and every such
flip bifurcation should be supercritical, a stable cycle of period k becoming
unstable and giving rise to a stable cycle of period 2k (Remark C.3.3). When
dealing with such families, one should expect to observe a cascade of period
doubling bifurcations, involving stable cycles, as the parameter varies. This
is indeed the pattern one observes in numerical experiments. We review here
some mamthematical results that explain the phenomenon.

Consider a family of maps G, from [a,, b,| into itself, in which the pa-
rameter o belongs to [0,1]. We assume that each G, is single peaked, i.e.
satisfies assumption (D.3) with a unique critical point z7, and moreover, that

o7



Atﬂvw =9 *,wu ( xﬁua.w =v $ X9 =9 A.&%u.y@n x




a, and b, depend continuously on «, as well as G, and its first derivative.
We shall say that the family is full if

1) for a = 0, one has G3(x}) = Go(bg) > zj. In that case all iterates of
the critical point, i.e. Gg(xf), belong to the interval [Go(bo), bo] ;

2) for a = 1, one has G3(z7}) < x} and G3(z7) < 3.

Thus in a full family, for o near 0, the only periodic orbits that G, may have,
are fixed points or cycles of period 2, as one can easily verify. By contrast, for
« near 1, the map G, has a cycle of period three, in view of Lemma D.1.1,
and thus from Sarkovskii’s theorem, cycles of every period.

Although Sarkovskii’s theorem is not a statement about stable cycles, one
should expect nevertheless that, in a full family, for any period k, a stable
cycle of that period should appear for some open interval of the parameter,
somewhere in [0,1]. Furthermore, in view of the ordering of the integers
appearing in Theorem D.1.2, stable cycles of a period equal to a power of 2
should appear first, i.e. for smaller values of a. The next fact makes precise
this intuition.

Theorem D.1.6. Consider a continuous, full, one-parameter family of sin-
gle peaked maps G, indexed by « in [0,1], as above. Then

1) given any k = 2, the set of parameters « for which G, has a superstable
cycle of period k is non-empty and closed. Given such an «, there is
an open interval containing o such that Gg has a stable cycle of period
k for every 3 in this interval.

2) Let o, be the first value of a for which there exists a superstable cycle
of period 2 for p = 1. Then the sequence « increases with p and
converges to some value o, < 1 as p tends to +oo. For each o in
[0, %), all cycles of the map G, have a period that is a power of 2 or
are fixed points.

3) If superstable cycles of periods 2P and 2 with ¢ > p + 1 occur respec-
tively for the values o and [ in [0,0%.), then a superstable cycle of
period 2% with ¢ > k > p, must appear for some value in the open
interval defined by o and f3.

The foregoing result is valid even for maps that have not a negative
Schwarzian derivative. If we make that additional assumption, we get

Theorem D.1.7. Consider a continuous, full, one-parameter family of maps
G, that satisfy each (D.3), (D.4), (D.5) and (D.6). Then
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1) for any « in [0,0%,), the map G, has a unique weakly stable cycle ;

2) there is an uncountable set of values of « in (a,, 1|, for which G, has
no weakly stable periodic orbit.

These results can be translated into a (global) bifurcation diagram, in the
spirit of the (local) bifurcation diagrams that were used in the previous ap-
pendix, by putting on an horizontal axis the parameter o, and by representing
on a vertical axis, for each value of «, the corresponding stable periodic or-
bit(s), whenever it exists. If we focus on the case where each member of the
family has a negative Schwarzian derivative, we obtain a cascade of global
period doubling bifurcations, as in Fig. D.3, on the interval [0, o). There,
stable periods equal to a power of 2 are “visited” consecutively as in the last
line of Sarkovskii’s ordering of the integers (but not necessarily monotonically
: think of a nonmonotonic reparametrization of the family). Stable cycles
with a period different from a power of 2 must (and will) occur in open
intervals of (af_, 1]. Once such a stable period obtain, say an odd number,
one should observe subsequently a cascade of global period doubling bifurca-
tions. For an uncountable number of values in (o, 1], the map is “aperiodic”
: there is no stable cycle.

Such a pattern can be produced “experimentally”, by using Theorem
D.1.4, and simulating the difference equations on a computer. One may em-
ploy a grid of values of the parameter, and plot on a vertical axis above each
a in the grid, the values of the iterates G7(x), say for n = 100 to n = 200,
of a point chosen at random in the corresponding interval [aq,bs]. If each
G, has a negative Schwarzian derivative, this procedure will display clearly
stable cycles that have a low period and are attracting enough. The experi-
mental procedure will thus reproduce neatly the cascade of period doubling
bifurcations in [0, o5, ). Beyond o, we shall observe typically in some places,
little windows with small stable periods such as 3 or 5, together with the be-
ginning of the corresponding period doubling cascade ; in other places, we
will observe a “mess” : there is then either no stable cycle, or a stable cycle
with a long period or that is only little attracting.

Fig. D.4 describes such an experimental bifurcation diagram for the lo-
gistic family
Golr)=1—ax* | xin[-1,1],

99



m.ﬁ.wwu




for 0 < ae £ 2. For each value of the parameter « in that interval, G, is single
peaked, with a unique critical point at z* = 0 and G, (z*) = 1 > z* ; it has
a negative Schwarzian derivative, since G (x) = 0. It is easy to verify that
G2 (x*) > x*, for a close to 0. For @ = 2, one has G%(z*) = G3 (z*) = -1 < z*
; the graph of GG, is then as in Fig. D.2.b : there is a cycle of period three,
hence a cycle of every period, and none of these cycles is stable. The logistic
family, for « in (0, 2], is full.

Deterministic chaos

Nonlinear difference equations on the real line can generate periodic or-
bits, as we have seen. They can also yield much more complex trajectories,
that look “random” and rather unpredictable, although they are generated
by a purely deterministic dynamical system. We have already alluded to the
possibility of such a behaviour when giving examples of maps that have no
stable cycle (Fig. D.2). The phenomenon has attracted a lot of attention, for
it seems to open the possibility to “explain” phenomena that look apparently
random by deterministic nonlinear dynamical systems, and thus to reconcile
19th century determinism and unpredictability.

The notion of chaos that we wish to discuss first is due to Li and Yorke. We
say that the map G from [a, b] into itself is chaotic if there is an uncountable
subset S of the interval, containing no periodic orbits, such that

1) for every z,y in S, x # y,
limsup,, |G"(x) — G"(y)| > 0,
liminf, |G"(z) — G"(y)| =0 ;
2) for every x in S and y periodic,

limsup,, |G"(x) — G"(y)| > 0.

This definition means that for any two (different) initial conditions = and y
in the chaotic set S, the corresponding trajectories become infinitely often
extremely close to each other and also infinitely often noticeably separated.
The notion seems to account for one essential feature of “turbulence” : small
perturbations of initial conditions lead to trajectories that are notably dif-
ferent.
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Li and Yorke (1975) proved that if the continuous map G has a cycle of
period three, then G is indeed chaotic. On the other hand, it is not difficult
to see that if an iterate G™ is chaotic for some n = 1, then G is also chaotic.
If one puts together these facts with Sarkovskii’s Theorem, one gets

Theorem D.1.8. If the continuous map G : [a,b] — [a,b] has a cycle of a
period that is not a power of two, then G s chaotic.

This notion of chaos is not quite satisfactory from a “physical” point of
view, however. It happens very often that although a given map G is chaotic
in the above sense, there is a stable periodic orbit that attracts most points
of the interval with respect to the Lebesgue measure. In view of Theorem
D.1.4, this will happen if G is single peaked, has a negative Schwarzian
derivative, and has a stable cycle of a period that is not a power of two. In
a bifurcating family of maps G, that are single peaked and have a negative
Schwarzian derivative as in Theorems D.1.6 and 7, maps G, will often be
chaotic in the sens of Li and Yorke in the whole interval (o, 1], yet for
many open subintervals, there will be a stable cycle attracting most points
of [aa,bs). In such circumstances, the presence of the chaotic set S may
affect the trajectories for some time, but will not influence the asymptotic
behaviour of the system.

This discussion shows that in this context, a satisfactory notion of chaos
should involve maps that have no stable cycle. In view of Theorem D.1.4, if
G is single peaked and satisfies SG < 0, this means that the iterates of the
critical point either do not converge, or hit an unstable periodic orbit.

Among the class of such aperiodic maps, of special interest are those
which have an “invariant probability measure” that has an integrable den-
sity with respect to the Lebesgue measure. The probability measure v on
la,b] (endowed with its Borel o-algebra) is said to be invariant with re-
spect to G if v(G71(A)) = v(A) for any Borel set. An example of such
an invariant probability measure is provided by considering a periodic orbit
{zo,x1,...,xx_1} and the probability measure v that assigns the weight 1/k
to each z;, j =0, ..., k — 1. More generally, the support of an invariant prob-
ability measure, i.e. the smallest closed set A that has probability one, is an
invariant set : G(x) is in A whenever z belongs to A. If v has a density (we
shall say then that v is continuous), the invariant set contains an uncount-
able set of points, and has positive Lebesgue measure. Finally, v is said to
be ergodic if for every v-integrable real function f,
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as n tends to +oo, for v-almost every x. This implies in particular that if
one considers for each = and every n, the empirical distribution v, (x) that is
generated by the iterates G’(x) for j = 0, ...,n — 1, which assigns the weight
1/n to each G’(x), then the sequence v,,(z) converges weakly to v for v-almost
every x (see, e.g. Parthasarathy (1967, Theorem 9.1) for a proof of that fact,
and for a definition of the weak convergence of probability measures). Thus
if G has an invariant probability measure v that is continuous and ergodic,
most of the trajectories starting in the support A of v will stay there and
will look quite complex since they will eventually fill up the entire support of
the limit distribution v. In fact, most of these trajectories will be dense in A.
Yet these trajectories display strong statistical regularities, since empirical
distributions and time averages become asymptotically fairly stable for v-
almost every initial point.

It turns out that maps having a graph like those of Fig. D.2. do have an
invariant, continuous, ergodic probability measure, as the next fact shows.

Theorem D.1.9. Assume that the map G from [a,b] into itself satisfies
(D.3), (D.5) and (D.6), that it has no weakly stable periodic orbit, and that
there exists an open neighbourhood V' of the critical point x* such that the it-
erates G™(x*) do not belong to V, for n =2 1. Then G has a unique continuous
wmwvariant probability measure. It is ergodic.

The foregoing conditions are met if G satisfies (D.3), (D.4), (D.5) and
(D.6), and if the iterates of the critical point hit an unstable periodic orbit.

Another notion of chaos, which is more directly inspired from the concept
of Li and Yorke, is the following one. A map G from [a, b] into itself is said
to have sensitive dependence on initial conditions if there exists a subset S
of the interval, having positive Lebesque measure, such that for every z,y in
S with x # vy,

lim sup,, |G"(x) — G™(y)| > 0

liminf, |G"(z) — G"(y)| =0
The difference with Li and Yorke is that one requires here “turbulence” to
occur on a set of initial conditions that is “thick” enough, i.e. that has
positive Lebesgue measure. According to Theorem D.1.4, if the map G is

single peaked and has a negative Schwarzian derivative, sensitive dependence
on initial conditions can obtain only if there is no stable cycle.

The idea of sensitive dependence on initial conditions can also be captured
by using the notion of so-called Lyapounov exponents. Let x be a point in
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la,b], and let z; = G?(z) be its iterates for j = 0, with the convention that
xo = x. The Lyapounov exponent of G at z is then defined as

1O 1 ne
lim —Z;LogIG'(wj—l)l = lim —Log |(G"™")'(x)|
]_

n—oo N 4

whenever the limit exists. When the definition is specialised to the case of a
fixed point, or more generally a periodic point of period k, the corresponding
Lyapounov exponent is simply the logarithm of the modulus of (G*)'(z).
Intuitively, the Lyapounov exponent measures the average (exponential) rate
of separation of the orbits of points near x from the trajectory generated by
x. Thus the idea that trajectories are sensitive to small changes of the initial
condition x, may be expressed by the property that the Lyapounov exponent
of G at x exists and is positive.

Consider now a map G that has an ergodic, continuous invariant prob-
ability measure v. Then by definition of ergodicity, Lyapounov exponents
exist for v-almost every z in the support A of v ; they are in fact equal to

/ Log|G'(x)| dv, and are thus independent of z. We may then speak of the

Lyapounov exponent of G on A. If we assume that it is positive, then the set
A has positive Lebesgue measure, and almost every initial condition z in A
gives rise to a trajectory that is dense in A and displays sensitive dependence
on initial conditions. Although the law of motion of the system is determinis-
tic, trajectories in A will look random, and will be in fact unpredictable after
a significant number of iterations if one makes even small errors of measure-
ment of the initial condition. The set A is then an instance of what is called
a strange attractor, and gives rise to deterministic turbulence or chaos.

A natural question arises in this context : what is the relative frequency
of stable periodic behaviour and of chaos in one-dimensional difference equa-
tions ? The issue involves in fact a subtle conflict between two notions of
“genericity”.

A convenient framework to analyze the issue is, again, to consider a
one-parameter family of single peaked maps having a negative Schwarzian
derivative, as in Theorem D.1.7. A common conjecture among mathemati-
cians is that for many “reasonable” families in that class, the set of values
of the parameter « for which a stable period obtains is open and dense in
0,1]. According to this topological viewpoint, maps G, that have no stable
cycles in the family are “rare”, and moreover, structurally unstable, i.e. a
small perturbation of the parameter o would lead back to a stable period.
Examples of such structural unstability are most easily visualized by looking
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at Fig. D.2. The map there have an invariant continuous probability mea-
sure, because the iterates of the critical point happen to hit upon an unstable
fixed point. It is clear, however, that such a feature can be destroyed by a
small perturbation of the map under consideration.

By contrast, it was shown by Jakobson (1981) that under the assumptions
of Theorem D.1.7, for many “reasonable” families, the set of values of the
parameter « for which G, has an invariant, continuous ergodic probability
measure, and displays sensitive dependence on initial conditions (has posi-
tive Lyapounov exponent) has positive Lebesgue measure. According to this
measure theoretic viewpoint, chaotic behaviour cannot be considered as rare.
If one chooses at random the parameter o in the family, there is a positive
probability to obtain a map that leads to deterministic chaos.

D.2. Homoclinic bifurcations and horseshoes

The example of complex periodic orbits and of chaos that were just de-
scribed involved single peaked maps of the real line with a significant “hump”.
Such maps are admittedly special, but they contain a mechanism that seems
to show up in many other cases of deterministic chaos that have been found
in higher dimensions : if we look at the maps represented in Figure D.2, for
instance, the image of the interval is obtained by stretching it, and folding it
back into itself. We present now a diffeomorphism of the plane, the socalled
horseshoe map, that is due to Smale, and leads to a complex invariant set
through a similar mechanism. As we shall see horseshoes arise for diffeomor-
phisms of the plane when there is a transverse crossing of the stable and
unstable manifolds of a hyperbolic fixed point. The phenomenon was known,
as least qualitatively, to Poincaré and Birkhoff.

The Horseshoe

Consider a C! diffeomorphism G of the plane, that sends the unit square
S onto the horseshoe shaped set G(S), as in Figure D.5, with A’ being the
image of A, B’ that of B, etc. (the map may actually be defined only on a
neighborhood of the region that interests us). The transformation involves
first a uniform vertical contraction by a factor a < 1, second a uniform
horizontal expansion by a factor b > 1, and finally, a folding of the resulting
rectangle in its middle. The only nonlinear transformation is the third one,
and it is assumed that it concerns only points of the horseshoe that fall
outside the unit square.
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We are interested in characterizing the set A of points = of the unit square
such that G™(z) is in S for all n, positive and negative. In this respect, it is
useful to let Ag and A; stand for the pre-images of the intersection of G(5)
and S, as in Figure D.6.a. By construction, the set G(S) NS is composed of
two horizontal rectangles of height a, while Ag and A; are vertical rectangles
of width b1

The set of points x of the unit square such that G(x) belongs to S, is
thus equal to the union of Ay and Ay, or equivalently to G™!(G(S) N S). By
iterating the map twice, we see that the image by G of G(S)N.S) is composed
of two thinner horseshoes that are contained in G(S). Their intersections
with the unit square yield four horizontal rectangles of height a2, the union
of which form the set

G(G(S)NS)NS=G*S)NG(S)NS,

see Figure D.6.b. The set of points = of the unit square such that both
G(z) and G*(x) belong to S is the union of the images by G2 of these
four horizontal rectangles. This set is therefore composed of four vertical
rectangles of width b=2, as shown in Figure D.6.c. Proceeding by induction
on n, one sees that the set of points z of S such that G7(z) is in S for every
j=1,...,n, is the union of 2" vertical rectangles of width 6=, given by

G(G™(S)N...NG(S) N S).

In the limit for n — +o0, the iterates G’(z) of z lie in the unit square for
all 7 > 0 if and only if x belongs to a family of vertical segments of S. The
foregoing construction makes apparent that the projection of this family of
vertical segments on the horizontal basis of S is a Cantor set (also called a
perfect set) Ay, i.e. a closed set such that 1) the largest connected subset is
a point, and 2) every point of A is an accumulation point of A, .

Figure D.6.a Figure D.6.b Figure D.6.c

One can proceed in a similar fashion for backward iterates. The set of
points = of S such that G'(z) is also on S is equal to the intersection of
G(z) and S, i.e. to the two horizontal rectangles of Figure D.6.a. Similarly,
the set of points = of the unit square having the property that both G7!(x)
and G~2(z) are in S, is composed of the four horizontal rectangles of Figure
D.6.b. Proceeding by induction on n and going to the limit, yields that the
set of points z of S such that G™"(z) is in S for every n > 0 is a family of
horizontal segments. Its projection on the vertical side of the unit square is,
again, a Cantor set A_.
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Therefore G"(x) belongs to S for all n, positive and negative, if and only
if « belongs to the product of these two Cantor sets, i.e. A=A, x A_.

To describe the structure of the orbits that lie in the invariant set A
that we just obtained, it is convenient to employ a method called symbolic
dynamics. The principle of the approach is to substitute to the complex task
of tracking down where the forward and backward orbits of a given point lie
exactly, the much simple task of identifying regions in which the points of
the orbit may fall.

In the case at hand, if x is in A, every iterate G™(x) belongs either to A,
or Ay, for each positive or negative n. For any x in A, we can therefore define
a bi-infinite sequence I(z), the n-th element of the sequence, i.e. I,(x),
being equal to 0 if G™(x) is in Ag, and to 1 if G™(z) belongs to A, for
—00 < n < +00.

It can be shown that the map z — I(z) from A to the set ¥ of bi-infinite
sequences of 0’s and 1’s, is onto and one-to-one. In fact, a much stronger
statement is true. Suppose that the set X is endowed with the metric defined

by
+oo
(D.7) d(I,J) = 6,271,

with 6, = 0 if I,, = J,,, and §,, = 1 otherwise. Two sequences I and J are
thus close in the topology induced by the metric (D.7), if and only if they
agree on a long enough “central block”, i.e. I, = J, for all |n|] < N for
some large enough N. Then the map z — I(z) from A onto 3, endowed
with this metric, is actually an homeomorphism. Since for any element x of
A, the sequence corresponding to G(z), i.e. I(G(zx)), is obtained from the
sequence I (z) by shifting indices one place to the left, the restriction of G to
the invariant set A is topologically conjugate to the (left) shift automorphism
o: 3 — X defined by [o(I)], = I, for —oo < n < +0o (see Guckenheimer
and Holmes (1983, Theorem 5.1.1)).

This result enables us to substitute to the study of the orbits of points
x of A, the analysis of the corresponding sequences I(z). For instance, an
element x of A is a periodic point, of period k, if and only if I(x) is periodic,
of period k. It follows that G has two fixed points in S, one in Ay and the
other in A;. More generally, G has periodic orbits of every period in A. It
is not difficult to see that the set of these periodic orbits is actually dense
in A. Indeed, let = be in A such that the corresponding sequence I(x) is not
periodic. Let J be a sequence that agrees with I(x) for all |n| < N, and that
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has period k£ > N. By taking N (and thus k) large enough, the sequence J
can be made as close as one wishes to I(x) in 3, endowed with the metric
(D.7). Since the map x — I(z) is an homeomorphism, the element y of A
such that J = I(y), is a periodic point, with period k, and is also as close as
one wishes to x.

The same type of argument shows that A contains an uncountable set
of nonperiodic orbits, that is dense in A. It is also quite easy to show that
A contains a dense orbit. Indeed, let J be a sequence in ¥ that has as a
subsequence every finite sequence of (s and 1’s one can think of. By adapting
the above density argument, the orbit generated by the element y of A such
that I(y) = J is actually dense in A. To sum up this discussion,

Theorem D.2.1. (Smale) : The horseshoe map G has an invariant Cantor
set A such that

1) A has periodic orbits of every period. The set of such periodic orbits is
dense.

2) A has an uncountable set of nonperiodic orbits. This set is also dense
in A.

3) A has a dense orbit.

It is intuitively clear from the preceding discussion (but nontrivial to
prove), that the qualitative features of the example should be structurally
stable, i.e. should remain valid after a small enough C! perturbation. Indeed,

Theorem D.2.2. (Smale) : Let G* be a diffeomorphism of the plane that is
C*' close enough to the horseshoe map G (at least in the region of interest).
Then G* has an invariant Cantor set A* such that the restriction of G* to
A* 1s topologically conjugate to the restriction of G to A.

Remark D.2.3 : Despite its many attractive features, the invariant set A
of the horseshoe map is not an attractor : if one perturbates slightly the
initial condition = so as to make it to fall outside A, the forward or backward
orbit of z will eventually leave the set S. Yet, the presence of the complicated
invariant set A will affect the behaviour of nearby trajectories, often for quite
some time. For an illuminating example of a complicated invariant set that
can be analyzed through the above symbolic dynamics methods, and that is
indeed an attractor (the so-called solenoid), see Lanford (1983). The example
is three dimensional, and involves stretching and folding a solid torus.
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Homoclinic Bifurcations

The qualitative features of the horseshoe map can be generated in the
case of diffeomorphisms of the plane, when there is transverse crossing of the
stable and unstable manifolds of a hyperbolic fixed point.

To see this point, consider a C” diffeomorphism G of the plane, with
r > 1, and let T be fixed point of G (here again G may be defined only on a
neighborhood of T that is sufficiently large to make the following arguments
to go through). We assume T to be hyperbolic, i.e. the Jacobian matrix
DG(7) has no eigenvalue of modulus one. We know that the local stable
and unstable manifolds W(ST) and W&) are then well defined and unique in
a sufficiently small neighborhood of the fixed point (Theorem B.5.1). The
global stable manifold of T is then defined by taking the union of the backward
iterates of W(ST),

we =G (W)
n>0

Similarly, the global unstable manifold of T is obtained by taking the union
of the forward iterates of W(’%),

we= )G (W)

n>0

We consider the case where the global stable and unstable manifolds of
T intersect transversely, as in Figure D.7.a. The point of intersection, say
y, is then an homoclinic point. There must be actually infinitely may such
homoclinic points : all forward and backward iterates of y, i.e. G™(y) for
—00 < n < 400, belong to both W* and W*. The (forward and backward)
orbit of y is then called a transversal homoclinic orbit. Since G™(y) — T as
n — 400, the unstable manifold W* must cross more and more often the
stable manifold W*, and oscillate more and more wildly as one gets closer to
the fixed point Z. A similar statement holds for the stable manifold.

Figure D.7.a Figure D.7.b

One should expect complex dynamics to occur in such a case. If one
considers a small tubular neighborhood V' of the stable manifold, the image
G™(V) should be, for n > 0 large enough, a tubular neighborhood of the
unstable manifold, as in Figure D.7.b. Intuitively, all the qualitative features
of the previous horseshoe example should also be present here. Indeed

Theorem D.2.4. (Smale homoclinic theorem) : Let G be a C* diffeomor-
phism of the plane and T a hyperbolic fized point. If the stable and unstable
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manifolds of T intersect transversely at y # T, there exists a neighborhood
V' of the fized point and an integer n > 0 such that the restriction of G™ to
V' is topologically conjugate to the horseshoe map.

The same phenomenon will occur in particular when a family of diffeo-
morphisms G, of the plane, undergoes a (global) homoclinic bifurcation, i.e.
when the unstable manifold of a hyperbolic fixed point becomes tangent (in
fact at infinitely many points) to the stable manifold, say when o = 0, to
lead to a transverse crossing for o > 0. The qualitative features of such a
bifurcation are described in Figure D.8.a, b, and c.

Figure D.8.a Figure D.8.b Figure D.8.c

Notes on the literature

The presentation of the global bifurcations of maps of the real line, in
section D.1, is adapted from a previous survey, Grandmont (1986), which
was itself derived from Collet and Eckmann (1980). See also Guckenheimer
and Holmes (1983, Chaps. 5.6 and 6.3), May (1976), Misiurewicz (1983).

Section D.2 on the horseshoe map and the homoclinic theorem is adapted
from the very clear exposition of Lanford (1983), and from Guckenheimer and
Holmes (1983, Chap. 5.1 and Theorem 5.3.5) ; see also Smale (1980).

The use of symbolic dynamics to describe complex orbits is pervasive in
this context. For further information and references on this question, the
reader may consult Guckenheimer and Holmes (1983, Chap. 5).

The complex invariant sets that we met when studying maps of an inter-
val that have a continuous invariant measure, or when analyzing the horse-
shoe map, are examples of what is called a strange attractor in the literature.
There are many variations in the definition of such an object, but the general
idea is to define it as a closed invariant set A with a complicated structure,
that attracts a set of points having positive Lebesgue measure, and that con-
tains a dense orbit. The requirement that A has a complicated structure
is sometimes expressed by the property that it has positive Lebesgue mea-
sure, or that its “dimension” is not an integer (fractal dimension), or both.
In many instances, one requires the underlying map G to have an ergodic
invariant probability measure concentrated on the attractor. One can then
define Lyapounov exponents in much the same way as in section D.1. “Tur-
bulence” will then obtain on A if the maximal Lyapounov exponent on A is
positive (the idea of turbulence is also sometimes expressed by the require-
ment that the attractor contains a transversal homoclinic orbit). On these
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questions, the reader may consult Guckenheimer and Holmes (1983, Chap.
5)
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