Competitive Equilibria of a Large Exchange Economy on the Commodity Space ℓ^{∞}

Mitsunori Noguchi, Department of Economics, Meijo University, Tengoya 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya 468, Japan

Takashi Suzuki, Department of Economics, Meiji-Gakuin University, 1-2-37 Shiroganedai, Minato-ku, Tokyo, 108, Japan

The existence of competitive equilibrium for a large exchange economy over the commodity space ℓ^{∞} will be discussed. Let $\beta > 0$ be a given positive number, and ℓ be a positive integer. We will assume that the consumption set X of each consumer is the set of nonnegative vectors whose coordinates after ℓ are bounded by β ,

$$X = \{x = (x^t) \in \ell^{\infty} | 0 \le x^t \text{ for } t \ge 1, x^t \le \beta \text{ for } t > \ell\}.$$

We call the first ℓ commodities, $x^1, x^2 \dots x^\ell$ the primary commodities. We then define the economy as a distribution on the space of consumers' characteristics following Hart, Hildenbrand and Kohlberg (1974), namely that an economy is a probability measure μ on the measurable space $(\mathcal{P} \times \Omega, \mathcal{B}(\mathcal{P} \times \Omega))$, where \mathcal{P} is a preference relation on the consumption set X and $\Omega \subset X$ is a space of the endowment vectors. We will denote the economy under consideration by μ . The marginals of μ will be denoted by subscripts, for instance, the marginal on \mathcal{P} is $\mu_{\mathcal{P}}$ and so on. The similar definitions on a distribution on $X \times \mathcal{P} \times \Omega$, see the next Definition.

Definition. A pair (p, ν) of a price vector $p \in \ell^1_+$ and a probability measure ν on $X \times \mathcal{P} \times \Omega$ is called a competitive equilibrium of the economy μ if the following conditions hold.

- (E-1) $\nu_{\mathcal{P}\times\Omega}=\mu$,
- (E-2) $\nu(\{(\boldsymbol{x}, \succsim, \omega) \in X \times \mathcal{P} \times \Omega | \boldsymbol{p}\boldsymbol{x} \leq \boldsymbol{p}\omega \text{ and } \boldsymbol{x} \succsim \boldsymbol{w} \text{ whenever } \boldsymbol{p}\boldsymbol{w} \leq \boldsymbol{p}\omega\}) = 1,$
- (E-3) $\int_X x d\nu_X \le \int_{\Omega} \omega d\mu_{\Omega}$.

The main result of this paper reads;

Theorem 1. Let μ be an economy which satisfies the following assumptions (E) and (P).

Assumption (E). $\int_{\Omega} \omega d\mu_{\Omega} \gg 0$,

Assumption (P).
$$\mu_{\Omega}(\{\omega = (\omega_{\ell}, \omega_{\infty}) \in \Omega | \omega_{\ell} > \mathbf{0}\}) = 1.$$

Then there exists a competitive equilibrium (p, ν) for μ .