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This abstract gives basic properties of inclusion-exclusion families, or interadditive families, with re-
spect to set functions over a nonempty finite set X ; for example, the collection of all possible inclusion-
exclusion families with respect to set functions over X is isomorphic to the free bounded distributive
lattice generated by X .

Throughout the abstract, X is assumed to be a nonempty finite set.

1 Families of sets

This section gives a summary of existing results on a lattice structure of families of subsets equipped
with a certain partial order (e.g., [1], [2]).

Definition 1. 1. A family A of sets is called an antichain if {A,A′} ⊆ A and A ⊆ A′ together imply
A = A′.

2. A family H of sets is said to be hereditary if H ′ ⊆ H ∈H implies H ′ ∈H .
Let A(X) def= {A ⊆ 2X | A is an antichain} and H(X) def= {H ⊆ 2X |H is hereditary}.

Definition 2. For S ⊆ 2X , we define MaxS ∈ A(X) and HerS ∈H(X) by

MaxS def= {A | A is maximal in S with respect to set inclusion ⊆},

HerS def= {H | H ⊆ S for some S ∈ S}.

Definition 3. For S , T ⊆ 2X .

S v T def⇐⇒ S ⊆ HerT , S ≡ T def⇐⇒ S v T and T v S .

Proposition 1. Let S , T ⊆ 2X .

1. S ≡MaxS ≡ HerS .

2. S ≡ T ⇐⇒ MaxS = MaxT ⇐⇒ HerS = HerT .

Obviously, v is a preorder on 2(2X ), i.e., it is reflexive and transitive, and ≡ is an equivalence
relation on 2(2X ). We denote by [S ] the equivalence class of S ∈ 2(2X ) with respect to ≡. Let v≡ be the
partial order on the quotient 2(2X )/≡ induced by v, i.e.,

[S ]v≡ [T ] def⇐⇒ S v T for S , T ⊆ 2X .
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Let L(X) be the set of lattice polynomials of elements of X defined by

L(X) def=

{_
S∈S

^
x∈S

x

∣∣∣∣∣ S ∈ 2(2X )

}
,

where
W

/0 = 0 and
V

/0 = 1. Then (L(X),∧,∨,0,1) is the free bounded distributive lattice (L(X),∧,∨,0,1)
generated by X , where a bounded lattice is a lattice with the greatest element 1 and the least element
0.

Proposition 2. Each of (2(2X )/≡,v≡), (A(X),v), (H(X),v) is isomorphic to the free bounded dis-
tributive lattice (L(X),∧,∨,0,1) generated by X. Especially, (H(X),v) is the lattice (H(X),∩,∪, /0,2X)
of sets. The isomorphism ϕ : L(X)→ 2(2X )/≡ is given as

ϕ

(_
S∈S

^
x∈S

x

)
= [{X \S | S ∈ S}]. (1)

2 Set functions and the Choquet integral

The contents of this section are a few modification of existing results (e.g., [3]).

Definition 4. A function µ : 2X → R is called a set function (with intercept) over X. A set function µ
is said to be without intercept if µ( /0) = 0. The essential part of a set function µ is the set function µ /0

defined by µ /0(E) = µ(E)−µ( /0) for E ⊆ X. A set function µ is said to be modular if µ(E ∪F)+µ(E ∩
F) = µ(E)+µ(F) for every pair E and F of subsets of X. A modular set function without intercept is
said to be additive. Let

SF(X) def= {µ | µ is a set function over X}, SF /0(X) def= {µ ∈ SF(X) | µ( /0) = 0}.

Hereinafter µ is assumed to be a set function over X , i.e., µ ∈ SF(X).

Definition 5. (cf. [4]) The Choquet integral (C)
R

f (x)dµ(x) of a function f : X → R with respect to
µ is defined by

(C)
Z

f dµ def= µ( /0)+
|X |

∑
i=1

[ f (xi)− f (xi−1)] [µ(Ai)−µ( /0)],

where x1, x2, . . . , x|X | is a permutation of the elements of X satisfying the condition f (x1) ≤ f (x2) ≤
·· · ≤ f (x|X |), f (x0)

def= 0, and Ai
def= {xi,xi+1, . . . ,x|X |} (i = 1,2, . . . , |X |).

Obviously it holds that

(C)
Z

f dµ = µ( /0)+(C)
Z

f dµ /0.

There are two distinct definitions of the Choquet integral over E ⊆ X :

(C)
Z

E
f dµ def= (C)

Z
( f � E)d(µ � 2E), (C)

Z
E

f dµ def= (C)
Z

f ·1E dµ,

where 1E is the indicator of E. In this abstract, however, we may adopt whichever one.
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Definition 6. The Möbius transform µM of µ is a set function over X defined by

µM(E) def= ∑
F⊆E

(−1)|E\F |µ(F).

By definition, µM( /0) = µ( /0). In addition, (µ /0)M(E) = µM(E) for every E ∈ 2X \{ /0}.

Definition 7. A subset F of X is called a focus, or a focal element, of µ if µM(F) 6= 0. The family of
foci of µ is denoted by F (µ); that is, F (µ) def= {F ⊆ X | µM(F) 6= 0}.

Obviously F (µ /0) = F (µ)\{ /0}.

Definition 8. µ is said to be k-modular if k = max{|F | | F ∈ F (µ)}, where max /0
def= 0. A k-modular

set function without intercept is said to be k-additive.

The following proposition includes the definition of null set.

Proposition 3. Let N ⊆ X. The following conditions are equivalent to each other.

(a) N is a null set with respect to µ.
(b) µ(E \N) = µ(E) whenever E ⊆ X.
(c) N ⊆ X \

S
F (µ).

(d) For every f : X → R,

(C)
Z

X
f dµ = (C)

Z
X\N

f dµ.

X \
S

F (µ) is the greatest null set. If N is a null set, then µ(N) = µ( /0). The family of null sets with
respect to µ /0 coincides with the family of null sets with respect to µ.

3 Inclusion-exclusion families

The contents of this section are a few modification of existing results (e.g., [3]).
The following theorem includes the definition of inclusion-exclusion family.

Theorem 1. Let µ be a set function over X and S a family of subsets of X. The following conditions
are equivalent to each other.

(a) S is an inclusion-exclusion family, or an interadditive family, with respect to µ.
(b) For every E ⊆ X

µ(E) = ∑
T ⊆S , T 6= /0

(−1)|T |+1µ
(\

T ∩E
)

. (2)

(c) Eq. (2) holds for every E ∈ 2X \HerS .
(d) F (µ)v S , or equivalently µM(E) = 0 for every E ∈ 2X \HerS .
(e) There exists a collection {µS}S∈S of set functions, each µS of which is defined on 2S, such that for
every E ⊆ X

µ(E) = ∑
S∈S

µS(E ∩S).

(f) There exists a collection {µS}S∈S of set functions, each µS of which is defined on 2S, such that for
every function f : X → R

(C)
Z

X
f dµ = ∑

S∈S
(C)
Z

S
f dµS.
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By the theorem above, F (µ) itself is an inclusion-exclusion family and one of the least ones
with respect to v. Hence MaxF (µ) is the least antichain inclusion-exclusion family and HerF (µ) is
the least hereditary inclusion-exclusion family. A family S of subsets of X is an inclusion-exclusion
family with respect to µ /0 iff S ∪{ /0} is an inclusion-exclusion family with respect to µ.

Proposition 4. Let S be an inclusion-exclusion family.

1. X \
S

S is a null set.
2. If N is a null set, then {S\N | S ∈ S} also is an inclusion-exclusion family.

Proposition 5. Let k be a nonnegative integer less than or equal to |X |. µ is at most k-modular iff
(X

k

)
is an inclusion-exclusion family.

If we consider only set functions without intercept, since there is no µ ∈ SF /0(X) such that F (µ) =
{ /0}, we may exclude { /0} from consideration. Then the collection of all possible inclusion-exclusion
families with respect to set functions without intercept over X is isomorphic to the free upper-bounded
distributive lattice generated by X , where an upper-bounded lattice is a lattice with the greatest element
1. Since /0 6∈ F (µ) for all µ ∈ SF /0(X) and S \ { /0} ≡ S for all S ⊆ 2X except S = { /0}, instead of
excluding { /0} from the collection of families of subsets, we can exclude /0 from families of subsets. Let
A\ /0(X) def= {A \{ /0} |A ∈A(X)} and H\ /0(X) def= {H \{ /0} |H ∈H(X)}. Note that 2(2X\{ /0}) = {F (µ) |
µ∈ SF /0(X)}, A\ /0(X) = {MaxF (µ) | µ∈ SF /0(X)}= A(X)\{{ /0}}, and H\ /0(X) = {(HerF (µ))\{ /0} |
µ ∈ SF /0(X)}. In addition, a set function without intercept with an inclusion-exclusion family S is
determined by its values on (HerS)\{ /0}.

Proposition 6. Each of ((2(2X ) \ {{ /0}})/ ≡,v≡), (2(2X\{ /0})/ ≡,v≡), (A\ /0(X),v),
(H(X)\{{ /0}},v), (H\ /0(X),v) is isomorphic to the free upper-bounded distributive lattice (L(X)\
{0},∧,∨,1) generated by X. Especially, (H\ /0(X),v) is the lattice
(H\ /0(X),∪,∩,2X \ { /0}) of sets. The isomorphism ϕ : L(X)\{0} → (2(2X ) \ {{ /0}})/ ≡ is given by
Eq. (1) provided that [{ /0}] is identified with [ /0].
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