Inclusion-Exclusion Families With Respect to Set Functions

Toshiaki Murofushi
Department of Computational Intelligence and Systems Sciences
Tokyo Institute of Technology
Yokohama 226-8502, Japan
murofusi@dis.titech.ac.jp

This abstract gives basic properties of inclusion-exclusion families, or interadditive families, with respect to set functions over a nonempty finite set \(X \); for example, the collection of all possible inclusion-exclusion families with respect to set functions over \(X \) is isomorphic to the free bounded distributive lattice generated by \(X \).

Throughout the abstract, \(X \) is assumed to be a nonempty finite set.

1 Families of sets

This section gives a summary of existing results on a lattice structure of families of subsets equipped with a certain partial order (e.g., [1], [2]).

Definition 1. 1. A family \(\mathcal{A} \) of sets is called an antichain if \(\{A,A'\} \subseteq \mathcal{A} \) and \(A \subseteq A' \) together imply \(A = A' \).

2. A family \(\mathcal{H} \) of sets is said to be hereditary if \(H' \subseteq H \in \mathcal{H} \) implies \(H' \in \mathcal{H} \).

Let \(\mathcal{A}(X) \) def \(\{A \subseteq 2^X | A \) is an antichain} \) and \(\mathcal{H}(X) \) def \(\{H \subseteq 2^X | H \) is hereditary\}.

Definition 2. For \(S \subseteq 2^X \), we define \(\text{Max}_S \in \mathcal{A}(X) \) and \(\text{Her}_S \in \mathcal{H}(X) \) by

\[
\text{Max}_S \overset{\text{def}}{=} \{A \mid A \text{ is maximal in } S \text{ with respect to set inclusion } \subseteq\},
\]

\[
\text{Her}_S \overset{\text{def}}{=} \{H \mid H \subseteq S \text{ for some } S \in \mathcal{S}\}.
\]

Definition 3. For \(S, T \subseteq 2^X \).

\[
S \subseteq T \iff S \subseteq \text{Her}_T, \quad S \equiv T \iff \text{Max}_S = \text{Max}_T \iff \text{Her}_S = \text{Her}_T.
\]

Proposition 1. Let \(S, T \subseteq 2^X \).

1. \(S \equiv \text{Max}S \equiv \text{Her}_S \).

2. \(S \equiv T \iff \text{Max}_S = \text{Max}_T \iff \text{Her}_S = \text{Her}_T \).

Obviously, \(\subseteq \) is a preorder on \(2^{2^X} \), i.e., it is reflexive and transitive, and \(\equiv \) is an equivalence relation on \(2^{2^X} \). We denote by \([S]\) the equivalence class of \(S \in 2^{2^X} \) with respect to \(\equiv \). Let \(\subseteq \equiv \) be the partial order on the quotient \(2^{2^X}/\equiv \) induced by \(\subseteq \), i.e.,

\[
[S] \subseteq \equiv [T] \overset{\text{def}}{\iff} S \subseteq T \quad \text{for } S, T \subseteq 2^X.
\]

* This work is partially supported by a grant for the 21st Century COE Program “Creation of Agent-Based Social Systems Sciences” from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
Let $\mathcal{L}(X)$ be the set of lattice polynomials of elements of X defined by

$$
\mathcal{L}(X) \overset{\text{def}}{=} \left\{ \bigvee_{S \in \mathcal{S}} \bigwedge_{x \in S} f \mid S \in 2^{(2^X)} \right\},
$$

where $\bigvee \emptyset = 0$ and $\bigwedge \emptyset = 1$. Then $(\mathcal{L}(X), \land, \lor, 0, 1)$ is the free bounded distributive lattice $(\mathcal{L}(X), \land, \lor, 0, 1)$ generated by X, where a bounded lattice is a lattice with the greatest element 1 and the least element 0.

Proposition 2. Each of $(2^{(2^X)}/\equiv, \subseteq)$, $(A(X), \subseteq)$, $(\mathbb{H}(X), \subseteq)$ is isomorphic to the free bounded distributive lattice $(\mathcal{L}(X), \land, \lor, 0, 1)$ generated by X. Especially, $(\mathbb{H}(X), \subseteq)$ is the lattice $(\mathbb{H}(X), \cap, \cup, \emptyset, 2^X)$ of sets. The isomorphism $\varphi: \mathcal{L}(X) \rightarrow 2^{(2^X)}/\equiv$ is given as

$$
\varphi \left(\bigvee_{S \in \mathcal{S}} \bigwedge_{x \in S} f \right) = \{ \{X \setminus S \mid S \in \mathcal{S}\} \}.
$$

2. Set functions and the Choquet integral

The contents of this section are a few modification of existing results (e.g., [3]).

Definition 4. A function $\mu: 2^X \rightarrow \mathbb{R}$ is called a set function (with intercept) over X. A set function μ is said to be without intercept if $\mu(\emptyset) = 0$. The essential part of a set function μ is the set function μ_0 defined by $\mu_0(E) = \mu(E) - \mu(\emptyset)$ for $E \subseteq X$. A set function μ is said to be modular if $\mu(E \cup F) + \mu(E \cap F) = \mu(E) + \mu(F)$ for every pair E and F of subsets of X. A modular set function without intercept is said to be additive. Let

$$
\mathbb{SF}(X) \overset{\text{def}}{=} \{ \mu \mid \mu \text{ is a set function over } X \}, \quad \mathbb{SF}_0(X) \overset{\text{def}}{=} \{ \mu \in \mathbb{SF}(X) \mid \mu(\emptyset) = 0 \}.
$$

Hereinafter μ is assumed to be a set function over X, i.e., $\mu \in \mathbb{SF}(X)$.

Definition 5. (cf. [4]) The Choquet integral $$(C) \int f(x) \, d\mu(x)$$ of a function $f: X \rightarrow \mathbb{R}$ with respect to μ is defined by

$$(C) \int f \, d\mu \overset{\text{def}}{=} \mu(\emptyset) + \sum_{i=1}^{\lvert X \rvert} [f(x_i) - f(x_{i-1})] [\mu(A_i) - \mu(\emptyset)],$$

where $x_1, x_2, \ldots, x_{\lvert X \rvert}$ is a permutation of the elements of X satisfying the condition $f(x_1) \leq f(x_2) \leq \cdots \leq f(x_{\lvert X \rvert})$, $f(x_0) \overset{\text{def}}{=} 0$, and $A_i \overset{\text{def}}{=} \{x_i, x_{i+1}, \ldots, x_{\lvert X \rvert}\}$ $(i = 1, 2, \ldots, \lvert X \rvert)$.

Obviously it holds that

$$(C) \int f \, d\mu = \mu(\emptyset) + (C) \int f \, d\mu_0.$$

There are two distinct definitions of the Choquet integral over $E \subseteq X$:

$$(C) \int_E f \, d\mu \overset{\text{def}}{=} (C) \int (f \{E\}) \, d(\mu \mid 2^E), \quad (C) \int_E f \, d\mu \overset{\text{def}}{=} (C) \int f \cdot 1_E \, d\mu,$$

where 1_E is the indicator of E. In this abstract, however, we may adopt whichever one.
Definition 6. The Möbius transform μ^M of μ is a set function over X defined by

$$\mu^M(E) \overset{\text{def}}{=} \sum_{F \subseteq E} (-1)^{|E \setminus F|} \mu(F).$$

By definition, $\mu^M(\emptyset) = \mu(\emptyset)$. In addition, $(\mu_0)^M(E) = \mu^M(E)$ for every $E \in 2^X \setminus \{\emptyset\}$.

Definition 7. A subset F of X is called a focus, or a focal element, of μ if $\mu^M(F) \neq 0$. The family of foci of μ is denoted by $\mathcal{F}(\mu)$; that is, $\mathcal{F}(\mu) \overset{\text{def}}{=} \{ F \subseteq X \mid \mu^M(F) \neq 0 \}$.

Obviously $\mathcal{F}(\mu_0) = \mathcal{F}(\mu) \setminus \{\emptyset\}$.

Definition 8. μ is said to be k-modular if $k = \max\{|F| \mid F \in \mathcal{F}(\mu)\}$, where $\max\emptyset \overset{\text{def}}{=} 0$. A k-modular set function without intercept is said to be k-additive.

The following proposition includes the definition of null set.

Proposition 3. Let $N \subseteq X$. The following conditions are equivalent to each other.

(a) N is a null set with respect to μ.
(b) $\mu(E \setminus N) = \mu(E)$ whenever $E \subseteq X$.
(c) $N \subseteq X \setminus \bigcup \mathcal{F}(\mu)$.
(d) For every $f : X \to \mathbb{R}$,

$$(C) \int_X f \, d\mu = (C) \int_{X\setminus N} f \, d\mu.$$

$X \setminus \bigcup \mathcal{F}(\mu)$ is the greatest null set. If N is a null set, then $\mu(N) = \mu(\emptyset)$. The family of null sets with respect to μ_0 coincides with the family of null sets with respect to μ.

3 Inclusion-exclusion families

The contents of this section are a few modification of existing results (e.g., [3]). The following theorem includes the definition of inclusion-exclusion family.

Theorem 1. Let μ be a set function over X and S a family of subsets of X. The following conditions are equivalent to each other.

(a) S is an inclusion-exclusion family, or an interadditive family, with respect to μ.
(b) For every $E \subseteq X$

$$\mu(E) = \sum_{T \subseteq S, T \neq \emptyset} (-1)^{|T|+1} \mu\left(\bigcap T \cap E\right). \quad (2)$$

(c) Eq. (2) holds for every $E \in 2^X \setminus \text{Her} S$.
(d) $\mathcal{F}(\mu) \subseteq S$, or equivalently $\mu^M(E) = 0$ for every $E \in 2^X \setminus \text{Her} S$.
(e) There exists a collection $\{\mu_S\}_{S \subseteq S}$ of set functions, each μ_S of which is defined on 2^S, such that for every $E \subseteq X$

$$\mu(E) = \sum_{S \subseteq S} \mu_S(E \cap S).$$

(f) There exists a collection $\{\mu_S\}_{S \subseteq S}$ of set functions, each μ_S of which is defined on 2^S, such that for every function $f : X \to \mathbb{R}$

$$(C) \int_X f \, d\mu = \sum_{S \subseteq S} (C) \int_S f \, d\mu_S.$$

105
By the theorem above, \(\mathcal{F}(\mu) \) itself is an inclusion-exclusion family and one of the least ones with respect to \(\subseteq \). Hence \(\text{Max}\mathcal{F}(\mu) \) is the least antichain inclusion-exclusion family and \(\text{Her}\mathcal{F}(\mu) \) is the least hereditary inclusion-exclusion family. A family \(S \) of subsets of \(X \) is an inclusion-exclusion family with respect to \(\mu \) if \(S \cup \{\emptyset\} \) is an inclusion-exclusion family with respect to \(\mu \).

Proposition 4. Let \(S \) be an inclusion-exclusion family.

1. \(X \setminus \bigcup S \) is a null set.
2. If \(N \) is a null set, then \(\{S \setminus N \mid S \in S\} \) also is an inclusion-exclusion family.

Proposition 5. Let \(k \) be a nonnegative integer less than or equal to \(|X| \). \(\mu \) is at most \(k \)-modular iff \(\binom{|X|}{k} \) is an inclusion-exclusion family.

If we consider only set functions without intercept, since there is no \(\mu \in \mathcal{SF}_0(X) \) such that \(\mathcal{F}(\mu) = \{\emptyset\} \), we may exclude \(\emptyset \) from consideration. Then the collection of all possible inclusion-exclusion families with respect to set functions without intercept over \(X \) is isomorphic to the free upper-bounded distributive lattice generated by \(X \), where an upper-bounded lattice is a lattice with the greatest element

1. Since \(\emptyset \notin \mathcal{F}(\mu) \) for all \(\mu \in \mathcal{SF}_0(X) \) and \(S \setminus \{\emptyset\} \equiv S \) for all \(S \subseteq 2^X \) except \(S = \{\emptyset\} \), instead of excluding \(\emptyset \) from the collection of families of subsets, we can exclude \(\emptyset \) from families of subsets. Let \(A_{\emptyset}(X) \equiv \{A \setminus \{\emptyset\} \mid A \in \mathcal{A}(X)\} \) and \(H_{\emptyset}(X) \equiv \{\mathcal{H}\setminus\{\emptyset\} \mid \mathcal{H} \in \mathcal{H}(X)\} \). Note that \(2(2^X\setminus\{\emptyset\}) = \{\mathcal{F}(\mu) \mid \mu \in \mathcal{SF}_0(X)\} \), \(A_{\emptyset}(X) = \{\text{Max}\mathcal{F}(\mu) \mid \mu \in \mathcal{SF}_0(X)\} = \mathcal{A}(X) \setminus \{\emptyset\} \), and \(H_{\emptyset}(X) = \{(\text{Her}\mathcal{F}(\mu)) \setminus \{\emptyset\} \mid \mu \in \mathcal{SF}_0(X)\} \). In addition, a set function without intercept with an inclusion-exclusion family \(S \) is determined by its values on \(\langle \text{Her}S \rangle \setminus \{\emptyset\} \).

Proposition 6. Each of \((2^{2^X} \setminus \{\emptyset\})/\equiv, \subseteq \equiv, \subseteq \equiv, (A_{\emptyset}(X), \subseteq), (H_{\emptyset}(X) \setminus \{\emptyset\}, \subseteq), (H_{\emptyset}(X), \subseteq) \) is isomorphic to the free upper-bounded distributive lattice \(\mathcal{L}(X) \setminus \{\emptyset\}, \wedge, \vee, 1 \) generated by \(X \). Especially, \((H_{\emptyset}(X), \subseteq) \) is the lattice \((H_{\emptyset}(X), \cup, \cap, 2^X \setminus \{\emptyset\}) \) of sets. The isomorphism \(\varphi : \mathcal{L}(X) \setminus \{\emptyset\} \to (2^{2^X} \setminus \{\emptyset\})/\equiv \) is given by Eq. (1) provided that \(\{\emptyset\} \) is identified with \(\emptyset \).

References