

バナッハ空間に於ける劣微分作用素の和の極大単調性

赤木 剛朗 (芝浦工業大学)
g-akagi@shibaura-it.ac.jp

Abstract

This talk is devoted to providing a sufficient condition for the maximality of the sum of subdifferential operators defined on reflexive Banach spaces and finally proving the maximal monotonicity in $L^p(\Omega) \times L^{p'}(\Omega)$ of the nonlinear elliptic operator $u \mapsto -\Delta_m u + \beta(u(\cdot))$ with a maximal monotone graph β .

1 Introduction

Let E and E^* be a reflexive Banach space and its dual space, respectively, and let $\phi_1, \phi_2 : E \rightarrow (-\infty, \infty]$ be proper (i.e., $\phi_1, \phi_2 \not\equiv \infty$) lower semicontinuous convex functionals with the effective domains $D(\phi_i) := \{u \in E; \phi_i(u) < \infty\}$ for $i = 1, 2$. Then the subdifferential operator $\partial_E \phi_i : E \rightarrow 2^{E^*}$ of ϕ_i is defined by

$$\partial_E \phi_i(u) := \{\xi \in E^*; \phi_i(v) - \phi_i(u) \geq \langle \xi, v - u \rangle_E \text{ for all } v \in D(\phi_i)\},$$

where $\langle \cdot, \cdot \rangle_E$ denotes the duality pairing between E and E^* , with the domain $D(\partial_E \phi_i) = \{u \in D(\phi_i); \partial_E \phi_i(u) \neq \emptyset\}$ for $i = 1, 2$. This talk provides a new sufficient condition for the maximal monotonicity of the sum $\partial_E \phi_1 + \partial_E \phi_2$ in $E \times E^*$ and an application to nonlinear elliptic operators in L^p -spaces.

This research is motivated by the question of whether the following operator \mathcal{M} is maximal monotone in $L^p(\Omega) \times L^{p'}(\Omega)$ with $p \in [2, \infty)$, $p' = p/(p-1)$ and a bounded domain Ω of \mathbb{R}^N :

$$\mathcal{M} : D(\mathcal{M}) \subset L^p(\Omega) \rightarrow L^{p'}(\Omega); u \mapsto -\Delta_m u + \beta(u(\cdot)), \quad (1.1)$$

where β is a maximal monotone graph in \mathbb{R} such that $\beta(0) \ni 0$, and Δ_m is a modified Laplacian given by

$$\Delta_m u = \nabla \cdot (|\nabla u|^{m-2} \nabla u), \quad 1 < m < \infty$$

equipped with the homogeneous Dirichlet boundary condition, i.e., $u|_{\partial\Omega} = 0$. The operator \mathcal{M} can be divided into two parts: $u \mapsto -\Delta_m u$ and $u \mapsto \beta(u(\cdot))$, and they are maximal monotone in $L^p(\Omega) \times L^{p'}(\Omega)$. Indeed, set $E = L^p(\Omega)$ and put

$$\phi_1(u) := \begin{cases} \frac{1}{m} \int_{\Omega} |\nabla u(x)|^m dx & \text{if } u \in W_0^{1,m}(\Omega), \\ \infty & \text{otherwise,} \end{cases} \quad (1.2)$$

$$\phi_2(u) := \begin{cases} \int_{\Omega} j(u(x)) dx & \text{if } j(u(\cdot)) \in L^1(\Omega), \\ \infty & \text{otherwise,} \end{cases} \quad (1.3)$$

where $j : \mathbb{R} \rightarrow (-\infty, \infty]$ is a proper lower semicontinuous convex function such that $\partial j = \beta$. Then $\partial_E \phi_1(u)$ and $\partial_E \phi_2(u)$ coincide with $-\Delta_m u$ equipped with $u|_{\partial\Omega} = 0$ and $\beta(u(\cdot))$, respectively, and moreover, every subdifferential operator is maximal monotone. However, these facts are not sufficient to ensure the maximal monotonicity of $\mathcal{M} = \partial_E \phi_1 + \partial_E \phi_2$ in $E \times E^*$.

The maximality for the sum of two maximal monotone operators was well studied in Hilbert space settings (see [1] and [2]). As for Banach space settings, a couple of sufficient conditions are proposed by Brézis, Crandall and Pazy [3]. Let A and B be maximal monotone operators from E into E^* . Their results ensure the maximal monotonicity of $A + B$ in $E \times E^*$ if one of the following conditions is at least satisfied:

- (i) $D(A) \cap (\text{Int}D(B)) \neq \emptyset$,
- (ii) B is dominated by A , i.e., $D(A) \subset D(B)$ and $\|B(u)\|_{E^*} \leq k\|A(u)\|_{E^*} + \ell(|u|_E)$ for all $u \in D(A)$ with $k \in (0, 1)$ and a non-decreasing function ℓ in \mathbb{R} ,
- (iii) $B = \partial_E \phi$ with a proper, lower semicontinuous convex function $\phi : E \rightarrow (-\infty, +\infty]$, and

$$\phi(J_\lambda u) \leq \phi(u) + C\lambda \quad \text{for } u \in D(\phi) \text{ and } \lambda > 0, \quad (1.4)$$

where J_λ denotes the resolvent of A in E .

Here we write $\|C\|_{E^*} := \inf\{|c|_{E^*}; c \in C\}$ for each non-empty subset C of E^* , and furthermore, the resolvent $J_\lambda : E \rightarrow D(A)$ is given such that $u_\lambda := J_\lambda u$ is a unique solution of $F_E(u_\lambda - u) + A(u_\lambda) \ni 0$, where F_E stands for the duality mapping between E and E^* , for each $u \in E$.

However, these results could not be applicable directly to our setting for (1.1). As for (i), neither $D(\partial_E \phi_1)$ nor $D(\partial_E \phi_2)$ might have any interior points in E ($= L^p(\Omega)$). Condition (ii) cannot be checked unless we impose an appropriate growth condition on β . Condition (iii) is available for the case that $p = 2$, because the duality mapping F_E of $E = L^2(\Omega)$ is the identity and the resolvent J_λ for $\partial_E \phi_2$ has a simple representation formula,

$$(J_\lambda u)(x) = (1 + \lambda\beta)^{-1}(u(x)) \quad \text{for a.e. } x \in \Omega, \quad (1.5)$$

which enables us to check (1.4). However, it is somewhat difficult to check (1.4) for the case that $p \neq 2$. Actually, the relation between the resolvents of $\partial_E \phi_2$ and β is unclear, since the duality mapping F_E is severely nonlinear whenever $p \neq 2$.

In this talk we propose a new sufficient condition for the maximality of $\partial_E \phi_1 + \partial_E \phi_2$ in $E \times E^*$ such that the representation formula (1.5) in $L^2(\Omega)$ can be effectively used in applications to nonlinear elliptic operators such as (1.1). More precisely, we introduce a Hilbert space H as a pivot space of the triplet $E \hookrightarrow H \equiv H^* \hookrightarrow E^*$ and an extension ϕ_2^H of ϕ_2 to H , and moreover, we give a sufficient condition for the maximality in terms of the resolvent and the Yosida approximation in H for $\partial_H \phi_2^H$.

References

- [1] H. Brézis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, Math Studies, Vol.5 North-Holland, Amsterdam/New York, 1973.
- [2] H. Brézis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, in: E. Zarantonello (Eds.), Contributions to Nonlinear Functional Analysis, Academic Press, New York-London, 1971, pp.101–156.
- [3] H. Brézis, M.G. Crandall, A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach space, *Comm. Pure. Appl. Math.* **23** (1970), 123–144.