A remark on Rademacher’s theorem
S.KUSUOKA (Univ. Tokyo)

Rademacher (Ann. Math. 79) proved the following.

Theorem 1 Let D be an open set in \mathbb{R}^N, and $F : D \to \mathbb{R}^N$ be a continuous function.

1. If
 \[\limsup_{h \to 0} \frac{1}{|h|} |F(x + h) - F(x)| < \infty \quad \text{for a.e.} \ x \in D, \]
 then F is totally differentiable at a.e. $x \in D$.

2. Moreover, if $F : D \to \mathbb{R}^N$ is injective, then
 \[\int_A |\det \nabla F(x)| dx = |F^{-1}(A)| \]
 for any Borel subset $A \subset D$.

As a corollary to this theorem, we have the following.

Corollary 2 Let D be an open set in \mathbb{R}^N, and $F : D \to \mathbb{R}^N$ be a injective Lipschitz continuous function. Then F is totally differentiable at a.e. $x \in D$, and
 \[\int_A |\det \nabla F(x)| dx = |F^{-1}(A)| \]
 for any Borel subset $A \subset D$.

This classical theorem is fine, but sometimes it is difficult to check whether a map is injective.

On the other hand, we have the following by using Sard’s theorem.

Theorem 3 Let $F : \mathbb{R}^N \to \mathbb{R}^N$ be a continuously differentiable function. Then for any nonnegative measurable functions f and g defined in \mathbb{R}^N
 \[\int_{\mathbb{R}^N} f(x) g(F(x)) |\det \nabla F(x)| dx = \int_{\mathbb{R}^N} g(y) N(y; f) dy, \]
 where
 \[N(y; f) = \sum_{x \in F^{-1}(y)} f(x), \quad y \in \mathbb{R}^N. \]

We prove the following.

Theorem 4 Let $F : \mathbb{R}^N \to \mathbb{R}^N$ be a continuous function belonging to $W^{1,p,\text{loc}}(\mathbb{R}^N; \mathbb{R}^N)$ for some $p > N$. Then there exists a $N : \mathcal{B}(\mathbb{R}^N) \times \mathbb{R}^N \to \{0,1,2,\ldots,\infty\}$ satisfying the following.

1. $N(\cdot, x) : \mathcal{B}(\mathbb{R}^N) \to \{0,1,2,\ldots,\infty\}$ is a measure for any $x \in \mathbb{R}^N$.
2. $N(A, \cdot) : \mathbb{R}^N \to \{0,1,2,\ldots,\infty\}$ is measurable for any $A \in \mathcal{B}(\mathbb{R}^N)$.
3. $N(\mathbb{R}^N \setminus F^{-1}(x), x) = 0$ for any $x \in \mathbb{R}^N$.
4. For any nonnegative measurable functions f and g defined in \mathbb{R}^N
 \[\int_{\mathbb{R}^N} f(x) g(F(x)) |\det \nabla F(x)| dx = \int_{\mathbb{R}^N} g(y) (\int_{\mathbb{R}^N} f(z) N(dz; y)) dy. \]