On differentiability and bifurcation

Gilles Evéquoz¹ and Charles Alexander Stuart²

¹ Ecole Polytechnique Fédérale de Lausanne, Institut d’Analyse et de Calcul Scientifique, CH-1015 Lausanne, Switzerland

² Ecole Polytechnique Fédérale de Lausanne, Institut d’Analyse et de Calcul Scientifique, CH-1015 Lausanne, Switzerland

Received: April 7, 2005
Revised: September 9, 2005

JEL classification: C65

Mathematical Subject Classification (2000): 47J15, 58E07, 35P30

Abstract. For a function acting between Banach spaces, we recall the notions of Hadamard and w-Hadamard differentiability and their relation to the common notions of Gâteaux and Fréchet differentiability. We observe that even for a function \(F: H \to H \) that is both Hadamard and w-Hadamard differentiable but not Fréchet differentiable at 0 on a real Hilbert space \(H \), there may be bifurcation for the equation \(F(u) = \lambda u \) at points \(\lambda \) which do not belong to the spectrum of \(F'(0) \). We establish some necessary conditions for \(\lambda \) to be a bifurcation point in such cases and we show how this result can be used in the context of partial differential equations such as

\[-\Delta u(x) + q(x)u(x) = \lambda e^{-|x|} \tanh |x| u(x)^4 \quad \text{for} \quad u \in H^2(\mathbb{R}^N)\]

where this situation occurs.