Adv. Math. Econ. 5, 23-54 (2003)

Functional evolution equations governed by m-accretive operators

Charles Castaing¹ and Ahmed Gamal Ibrahim²

¹ Département de Mathématiques, Case 051, Université Montpellier II, F-34095 Montpellier cedex 5, France

² Department of Mathematics, Faculty of Sciences, Cairo University, Cairo, Egypt

Received: September 1, 2002 Revised: December 1, 2002

JEL classification: C62, C72

Mathematical Subject Classification (2000): 28A33, 28A50

Abstract. Let r > 0 be a finite delay and $C_0 = C_E([-r, 0])$ be the Banach space of continuous vector-valued functions defined on [-r, 0] taking values in a separable reflexive Banach space E such that its strong dual E' is uniformly convex. We discuss the existence of strong solutions for an evolution equation of the form $\dot{u}(t) \in -A(t)u(t) + F(t, \tau(t)u)$ a.e in [0, 1], where $u : [-r, 1] \to E$ is a continuous mapping from [-r, 1] into E such that its restriction to [-r, 0]is equal to $\varphi \in C_0$, and its restriction to [0, 1] is absolutely continuous, (i.e $u(t) = u(0) + \int_0^t \dot{u}(s) ds, \forall t \in [0, 1]$ with $\dot{u} \in L^1_E([0, 1])$, and satisfies the preceding inclusion, A(t) is an *m*-accretive multivalued operator on $E, F : [0, 1] \times C_0 \to E$ is a convex weakly compact valued, separately scalarly measurable and separately scalarly upper semicontinuous multifunction and $(\tau(t)u)(s) = u(t + s), \forall s \in$ [-r, 0]. Some applications to the sweeping process (or Moreau's process) and Optimal Control involving Young measures are also presented.

Key words: accretive operator, ball-compact, functional differential inclusion, maximal monotone operator, multifunction, original control, relaxed control, relaxation, Young measure